eventscribe

The eventScribe Educational Program Planner system gives you access to information on sessions, special events, and the conference venue. Take a look at hotel maps to familiarize yourself with the venue, read biographies of our plenary speakers, and download handouts and resources for your sessions.

close this panel

SUBMIT FEEDBACKfeedback icon

Please enter any improvements, suggestions, or comments for the JSM Proceedings.

Comments


close this panel
support

Technical Support


Phone: (410) 638-9239

Fax: (410) 638-6108

GoToMeeting: Meet Now!

Web: www.CadmiumCD.com

Submit Support Ticket


close this panel
‹‹ Go Back

Crystal Wiedner

The University of Texas at San Antonio



‹‹ Go Back

Please enter your access key

The asset you are trying to access is locked for premium users. Please enter your access key to unlock.


Email This Presentation:

From:

To:

Subject:

Body:

←Back IconGems-Print

473 – Design of Experiments and Advanced Analytics

Order-Restricted Bayesian Inference and Optimal Designs for the Simple Step-Stress Accelerated Life Tests Under Progressive Type-I Censoring Based on Three-Parameter Gamma Prior

Sponsor: Quality and Productivity Section
Keywords: accelerated life tests, Bayesian analysis, design of experiments, order-restricted inference, progressive type-I censoring, step-stress loading

Crystal Wiedner

The University of Texas at San Antonio

In this work, we investigate the order-restricted Bayesian estimation and design optimization for a progressively Type-I censored simple step-stress accelerated life tests with exponential lifetimes under both continuous and interval inspections. Based on the three-parameter gamma distribution as a conditional prior, we ensure that the failure rates increase as the stress level increases. In addition, its conjugate-like structure enables us to derive the exact joint posterior distribution of the parameters without a need to perform an expensive MCMC sampling. Upon these distributional results, several Bayesian estimators for the model parameters are suggested along with their individual/joint credible intervals. We then explore the Bayesian design optimization under various design criteria based on Shannon information gain and the posterior variance-covariance matrix. Through Monte Carlo simulations, the performance of our proposed inferential methods are assessed and compared between the continuous and interval inspections. Finally, a real engineering case study for analyzing the reliability of a solar lighting device is presented to illustrate the methods developed in this work.

"eventScribe", the eventScribe logo, "CadmiumCD", and the CadmiumCD logo are trademarks of CadmiumCD LLC, and may not be copied, imitated or used, in whole or in part, without prior written permission from CadmiumCD. The appearance of these proceedings, customized graphics that are unique to these proceedings, and customized scripts are the service mark, trademark and/or trade dress of CadmiumCD and may not be copied, imitated or used, in whole or in part, without prior written notification. All other trademarks, slogans, company names or logos are the property of their respective owners. Reference to any products, services, processes or other information, by trade name, trademark, manufacturer, owner, or otherwise does not constitute or imply endorsement, sponsorship, or recommendation thereof by CadmiumCD.

As a user you may provide CadmiumCD with feedback. Any ideas or suggestions you provide through any feedback mechanisms on these proceedings may be used by CadmiumCD, at our sole discretion, including future modifications to the eventScribe product. You hereby grant to CadmiumCD and our assigns a perpetual, worldwide, fully transferable, sublicensable, irrevocable, royalty free license to use, reproduce, modify, create derivative works from, distribute, and display the feedback in any manner and for any purpose.

© 2020 CadmiumCD