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Abstract
In this work, we investigate the order-restricted Bayesian estimation and design optimization for

a progressively Type-I censored simple step-stress accelerated life tests with exponential lifetimes
under both continuous and interval inspections. Based on the three-parameter gamma distribution as
a conditional prior, we ensure that the failure rates increase as the stress level increases. In addition,
its conjugate-like structure enables us to derive the exact joint posterior distribution of the param-
eters without a need to perform an expensive MCMC sampling. Upon these distributional results,
several Bayesian estimators for the model parameters are suggested along with their individual/joint
credible intervals. We then explore the Bayesian design optimization under various design criteria
based on Shannon information gain and the posterior variance-covariance matrix. Through Monte
Carlo simulations, the performance of our proposed inferential methods are assessed and compared
between the continuous and interval inspections. Finally, a real engineering case study for analyzing
the reliability of a solar lighting device is presented to illustrate the methods developed in this work.

Key Words: accelerated life tests, Bayesian analysis, design of experiments, order-restricted in-
ference, progressive Type-I censoring, step-stress loading

1. Introduction

Accelerated life testing (ALT) has become a familiar technique to expedite a life test. This
design is valuable to reliability experiments because many products and devices nowadays
are lasting longer. By adding stress to an experiment, say in the form of increased temper-
ature, voltage or use in general, failures can be observed faster. This additional stress can
be imposed in various ways. It can be constant, progressive (ramp) or added stepwise. To
relate the results back to normal use conditions, one can use extrapolation.

Stress added stepwise is referred to as a step-stress accelerated life test (SSALT). Be-
tween these steps, the stress can be increased or decreased. This is called a simple SSALT
when only two levels are considered. For typical parametric analysis of this data, each
stress level is assumed to belong to some right-skewed distribution. To combine these dif-
ferent lifetime distributions, another assumption is made about the model that relates them.
Commonly used models include the cumulative exposure (CE) model, see Nelson (1980),
the tampered failure (TF) model, see Bhattacharyya and Soejoeti (1989), the tampered ran-
dom variable (TRV) model, see DeGroot and Goel (1979) and the cumulative risk (CR)
model, see van Dorp et al. (1996).

The CE model is popular because it is conceptually plausible. The main idea is that the
distribution function can be constructed piecewise by bringing together the corresponding
segments of the distributions of the different stress levels. There are instances where the CE
model is equivalent to the TF and/or TRV models, for instance when the lifetime distribu-
tions are assumed to be exponential. This finding as well as a brief review and comparison
of models is provided in Xu and Fei (2012).
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When designing an experiment, various censoring schemes may be considered. To save
resources, one might consider progressive censoring, which allows for items to be censored
before the end of the experiment, such as at the stress change time point(s). Other consid-
erations related to censoring include whether to use Type-I, Type-II or a hybrid censoring
scheme. These choices depend on experimental constraints and goals. For more details on
censoring schemes particularly related to SSALTs see Kundu and Ganguly (2017).

In the work to follow, we explore progressively Type-I censored simple SSALTs under
continuous inspections assuming that the lifetimes are exponential and that a cumulative
exposure model holds. The likelihood function for this then involves two (rate) parameters,
λ1 andλ2. Intuitively we know thatλ1 should be less thanλ2. To impose this order
restriction, we propose using a Bayesian framework with a three-parameter gamma (viz.,
Erlang) distribution as a conditional prior. This prior results in a tractable joint posterior
distribution, allowing for fairly quick computations.

Works related to order restricted inference include Balakrishnan et al. (2009), Ganguly
et al. (2015), Samanta et al. (2017) and Mondal and Kundu (2020). The former work
is approached in a Frequentist way while the latter three take a Bayesian approach. The
Frequentist work is rather involved, obtaining estimates with the use of isotonic regres-
sion. The Bayesian estimates in the middle two noted works were obtained assuming that
λ1 = αλ2, whereλ2 follows a gamma distribution andα follows a beta distribution. This
prior is understandable, yet leads to a posterior that does not have a closed form, requir-
ing importance sampling. The last noted work explores Weibull lifetimes and uses a beta
gamma prior to incorporate order restriction. This work too employs importance sampling
to obtain estimates. In regards to design optimization, there are various references under
these experimental settings, see for example Gouno et al. (2004), Wu et al. (2006) or
Balakrishnan and Han (2009).

The goal of this article is to introduce a computationally more appealing Bayesian ap-
proach to order restricted simple SSALT inference and design optimization. This article
is organized as follows. In Section 2 we provide the model for simple SSALTs under the
previously mentioned Bayesian framework and assumptions. Additionally, we derive the
joint and marginal posterior distributions and show how to obtain various estimators. In
Section 3 we discuss the algorithms related to obtaining highest posterior density (HPD)
credible regions. In Section 4 we discuss simulation results for Bayesian inference. In Sec-
tion 5 we provide a real engineering case study for analyzing the reliability characteristic
of a solar lighting device which illustrates the methods developed in this work. In Section
6 we discuss the results for Bayesian optimal design. And lastly, in Section 7 we conclude
the paper and note our plans for future work.

2. Model Description

The model to follow is for simple step-stress accelerated life testing with progressive Type-
I censoring under continuous monitoring. The assumptions are that a cumulative exposure
model is appropriate and that the life distribution of a test unit is exponential at any level
of stress. The likelihood function for this was given by Gouno et al. (2004). Using a
rate parametrization, we have Equation 1. Here,ni are the number of units that failed
at the respective stress levelxi, i.e.) the number of failures observed in the time interval
(τi−1, τi), andUi =

∑ni

j=1(ti,j − τi−1) + (Ni− ni)(τi− τi−1). Ni are the number of units
entering at the respective stress level which depend on the the censoring proportionπ∗.

L(λ1, λ2|t) =λn1

1 λn2

2 exp(−λ1U1 − λ2U2) (1)

Using a Bayesian framework we propose an order restricted conjugate-like prior,π(λ1, λ2),
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that is a joint distribution of 3-parameter gamma (viz., Erlang) distributions as in Equation
2. Utilizing the shift parameter in this distribution allows us to ensure that the rate parame-
ter increases as the stress level increases.

π(λ1) =
γα1

1

(α1 − 1)!
(λ1)

α1−1 exp(−γ1λ1)

π(λ2|λ1) =
γα2

2

(α2 − 1)!
(λ2 − λ1)

α2−1 exp(−γ2(λ2 − λ1))

αi ∈ {1, 2, 3, ...} andγi > 0 i = 1, 2.

(2)

To derive the exact joint posterior distribution,π(λ1, λ2|t), we compute the following.

π(λ1, λ2|t) ∝ L(λ1, λ2|t)π(λ1, λ2)

∝ L(λ1, λ2|t)π(λ1)π(λ2|λ1)

∝ λn1

1 λn2

2 exp(−λ1U1 − λ2U2)(λ1)
α1−1 exp(−γ1λ1)(λ2 − λ1)

α2−1 exp(−γ2(λ2 − λ1))

∝ λn1

1 λn2

2 exp(−λ1U1 − λ2U2)(λ1)
α1−1 exp(−γ1λ1)

×

α2−1
∑

j1=0

(

α2 − 1

j1

)

λα2−1−j1
2 (−1)j1(λ1)

j1 exp(−γ2(λ2 − λ1))

∝

α2−1
∑

j1=0

(

α2 − 1

j1

)

(−1)j1λn1+α1+j1−1
1 exp(−λ1(U1 + γ1 − γ2))

×λn2+α2−j1−1
2 exp(−λ2(U2 + γ2)) (3)

What we see is that this computation results in a joint posterior distribution that is a
generalized mixture of gamma densities. We use the result of (3) to compute a normalizing
constant, which is shown in (4). Further, the marginal distributions,π(λ1|t) andπ(λ2|t),
are derived and given respectively in (5) and (6).

NC =

n2
∑

d=0

(

n2

d

)

Γ(α2 + d)

(U2 + γ2)α2+d

Γ(α1 + n1 + n2 − d)

(U1 + U2 + γ1)α1+n1+n2−d (4)

π(λ1|t) = NC−1
n2
∑

i=0

(

n2

i

)

Γ(α2 + i)

(U2 + γ2)α2+i
λn1+n2+α1−i−1
1 exp(−λ1(U1 + U2 + γ1))

(5)

π(λ2|t) = NC−1
α2−1
∑

i=0

(

α2 − 1

i

)

(−1)iλn2+α2−i−1
2 exp(−λ2(U2 + γ2))

×
(n1 + α1 + i− 1)!

(U1 + γ1 − γ2)n1+α1+i

[

1− exp(−λ2(U1 + γ1 − γ2))

×

n1+α1+i−1
∑

r=0

(λ2(U1 + γ1 − γ2))
r

r!

]

(6)

To compute the marginal means and variances, we obtain thejth moments for both
π(λ1|t) andπ(λ2|t), which are shown in (7) and (8). The expectation of(λ1λ2) computed
from the joint posterior distribution is as shown in (9).
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E(λj
1|t) = NC−1

n2
∑

i=0

(

n2

i

)

Γ(α2 + i)

(U2 + γ2)α2+i

Γ(n1 + n2 + α1 − i+ j)

(U1 + U2 + γ1)n1+n2+α1−i+j
(7)

E(λj
2|t) = NC−1

α2−1
∑

i=0

(

α2 − 1

i

)

(−1)i
(n1 + α1 + i− 1)!

(U1 + γ1 − γ2)n1+α1+i

[ Γ(n2 + α2 − i+ j)

(U2 + γ2)n2+α2−i+j
−

n1+α1+i−1
∑

r=0

(U1 + γ1 − γ2)
r

r!

Γ(n2 + α2 − i+ r + j)

(U1 + U2 + γ1)n2+α2−i+r+j

]

(8)

E(λ1λ2|t) = NC−1
n2+1
∑

i=0

(

n2 + 1

i

)

Γ(α2 + i)

(U2 + γ2)α2+i

Γ(α1 + n1 + n2 − i+ 2)

(U1 + U2 + γ1)α1+n1+n2−i+2
(9)

Additionally, we derived expressions for the marginal cumulative distribution functions
(cdfs) to identify the quantiles including the median.

3. Credible Regions

To compute the joint credible region for(λ1, λ2), methodology adapted from Turkkan and
Pham-Gia (1997) was used, see Algorithm 1. Here(L1, U1) and (L2, U2) represent the
rectangular boundary of the contour atk (some density). Though the integration is per-
formed to account for the constraintλ1 < λ2, this approach to compute the volume can
still result in overestimation. The magnitude of this deviation is based on the shape of
the posterior. Therefore, an alternative approach is to compute the volume using a mesh
grid over the region instead. In the multimodal case, we recommend the grid. For the
simulations in Section 4, a grid was used afterwards to estimate the actual volume.

Two approaches are proposed to compute the marginal credible intervals. In a similar
fashion as to the joint interval, one approach is to compute the area of the distribution at a
given density. The proposed starting point is at someǫ value just below the mode. At this
density, the intersecting points of the distribution, can be computed using a root finding
technique. The corresponding area is then obtained using the respective cdfs. We can
continue to travel down the density until the desired area is achieved.

For the case when the marginal distribution is multimodal, a sliding window approach
should be considered. Here, starting atl = 0, we can identify the value,u, at which the
desired area under the curve is obtained. Then incrementing by some smallǫ value, we
compute the respectiveu values. The credible interval will be the(l, u) with the shortest
length.
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Algorithm 1 Construction of the100(1 − α)% HPD Joint Credible Region for(λ1, λ2)

k ← max{π(λ1, λ2|t)}
while k > 0 do
S ← {(λ1, λ2) | π(λ1, λ2|t) = k}

L1 ← min
{

(1
0

)T
v
∣

∣

∣
v ∈ S

}

and U1 ← max
{

(1
0

)T
v
∣

∣

∣
v ∈ S

}

L2 ← min
{

(0
1

)T
v
∣

∣

∣
v ∈ S

}

and U2 ← max
{

(0
1

)T
v
∣

∣

∣
v ∈ S

}

M ← max{U1, L2}

Volume←
∫ U2

L2

∫ U1

L1

π(λ1, λ2|t)dλ1dλ2 =

∫ M

L2

∫ λ2

L1

π(λ1, λ2|t)dλ1dλ2 +

∫ U2

M

∫ U1

L1

π(λ1, λ2|t)dλ1dλ2

if Volume = 1-α then
break

else
k ← k − ǫ

end if
end while
return [L1, U1; L2, U2]

4. Simulation Results

A Monte Carlo simulation study was conducted with the parameter valuesλ1 = 1.1052
andλ2 = 2.7183 along with the hyperparametersα1 = α2 = 2, γ1 = γ2 = 0.001 and then
γ1 = γ2 = 0.0001. The selections made forλ1 andλ2 were motivated by the desire to fol-
low choices made for related frequentist work of Han and Bai (2020). The specific choices
of hyperparametersα1, α2, γ1, andγ2 were explored in order to make the joint prior distri-
bution as noninformative/objective as possible. The integer-valued shape hyperparameters
only allow for a limited number of options. Settingα1 = α2 = 5 was considered; however,
for the given sample sizes, this prior was overpowering and exhibited a more drastic and
negative impact on the inference forλ1 andλ2, yielding unsatisfactory results by severely
overestimatingλ2. On the other hand, sensitivity analyses revealed negligible impact on
all the measures considered in this study when changing the rate hyperparameters between
γ1 = γ2 = 0.001 andγ1 = γ2 = 0.0001. The results to follow are based off of 1000 simu-
lations withn = 24 and then repeated forn = 48. As an illustration, equal step durations
were implemented with the total test duration choices ofτ = 0.9, τ = 1.2 andτ = 1.5.
Given the progressive Type-I censoring scheme, the proportion of surviving units to censor
after the first level was chosen asπ∗ = 0%, π∗ = 10% andπ∗ = 20%.

Bayesian estimators for the model parametersλ1 andλ2 include the means, medians
and modes from the respective marginal distributions. From Tables 1 and 2, it is observed
that for bothλ1 andλ2, the posterior mean> the posterior median> the posterior mode,
indicating that each marginal posterior is skewed to the right as expected from a mixture
of gamma densities. In all simulations, these values overestimate the selected parameter
values for the study, primarily due to the choice of our priors having positive means. Such
deviation is more pronounced forλ2 with much larger posterior variance than forλ1. This
relatively poor performance for estimation ofλ2 is not always the case but because of the
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particular experimental setup chosen for our simulation study with equal durations at the
two stress levels. As the sample sizen increases from 24 to 48, we see that all Bayes
estimates (posterior mean, median, and mode) forλ1 andλ2 decrease towards the specified
value of each parameter, especially in a larger degree forλ2; see Tables 1 and 2. The
posterior variance ofλ1 exhibits almost 50% reduction while that ofλ2 shows reduction
between 50% to 65%, depending on other parameter values. The posterior covariance
betweenλ1 andλ2 also decreases substantially, making these parameters less correlated
with a larger sample size. It is understood that an increase of the sample size diminishes
the relative impact of the joint prior which originally models a moderately strong positive
correlation of 0.7071 between the parameters based on the conditional three-parameter
gamma distribution.

The 95% HPD credible intervals forλ1 andλ2 are presented in Tables 3 and 4 based
on their marginal posterior distributions as well as in Tables 5 and 6 based on their joint
posterior. In the case ofλ1, for all selections, roughly 95% of intervals contain the selected
value; however, such results are not obtained forλ2, with 90-94% of intervals containing
the selected value, depending on choices ofn, τ andπ∗. Also, in general,λ2 has a much
larger posterior variance thanλ1, as demonstrated in Tables 1 and 2, resulting in much
wider marginal HPD credible intervals forλ2. An interesting observation here is that a
wider credible interval forλ2 on average does not necessarily improve the percentage of
intervals containing its selected value. It is because a larger average interval length forλ2

is associated with not only a larger posterior variance but also further overestimation ofλ2

due to its upward biased mode and right-skewed posterior. Asn increases, the marginal
95% HPD credible intervals all shrink for both parameters. Forλ1, the interval widths are
decreased by 30% on average while the degree of shrinkage is a little more substantial for
λ2. As aforementioned, forλ1, the proportion of intervals containing the selected value
is consistently higher than 95% while it is consistently lower forλ2. With an increased
sample size, it is observed that both proportions improve, getting closer to the 95% level.
The magnitude of improvement is more noticeable forλ2 than forλ1.

With a largern, the joint 95% HPD credible regions also get tightened while the cov-
erage proportion improves. It is noticed that for each parameter, the upper bound of the
marginal intervals and joint regions shrinks faster to the center than the corresponding lower
bound as the sample size increases. This is because with an increased sample size, our (ex-
tremely dispersed) relatively objective prior has less influence on the posterior, reducing
the overall right skewness of the posterior more drastically. Algorithm 1 described in the
previous section provides a simplified approach to compute the joint credible region pre-
sented in Tables 5 and 6. Using this algorithm establishes a rectangular or polygon region
around the joint distribution, and thus, the actual volume of the posterior inside the region
is potentially underestimated. To quantify this, a mesh grid for the cross section of the joint
posterior enclosed by the region was used to better estimate the actual volume/probability.
As expected, the actual coverage proportion of the joint95% HPD credible region proposed
in this study is slightly less than the nominal but reasonable as it consistently achieves about
92% on average regardless of other parameter values. To improve this coverage proportion
without hurting the computational efficiency, one may slightly enlarge the joint credible
region by proportionately expanding the distance of each side of the rectangle from the
location of the posterior mode.

It is also observed from Tables 1 through 4 that increasingπ∗, the proportion of inter-
mediate censoring, increases both the variances and average interval lengths forλ1 andλ2.
This is exactly the opposite effect of increasing the sample sizen since censoring reduces
the effective sample size and thus the amount of information from an ALT experiment. With
these observations, we see that a larger sample size and a smaller proportion of surviving
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units to censor result in better estimates, especially forλ2. To further improve estimates of
λ2, another consideration would be to use unequal step durations, such as short first level
and long second level.

As the total test durationτ increases, all Bayes estimates forλ1 decrease while those for
λ2 all increase. At the same time, the posterior variance ofλ1 decreases while the posterior
variance ofλ2 increases. In turn, the average lengths of the corresponding marginal HPD
credible intervals forλ1 andλ2 respectively decrease and increase. A similar trend is also
observed for their joint HPD credible regions in Tables 5 and 6. The range ofλ1 decreases
as a function ofτ while that ofλ2 increases. Again, this observation is due to the particular
experimental scenario chosen for the simulation study with uniform durations at the two
stress levels. With a longer test durationτ , the probability of collecting more failures, or
equivalently more information, at the first stress levelx1 gets higher. This has an obvious
effect of improving the estimates ofλ1, reducing its dispersion. However, this results in
cutting down the number of surviving test units to enter the second stress levelx2. This
trade-off reduces the amount of information available to estimateλ2, hence blowing up
its dispersion and worsening the estimation precision. Using 1000 samples, each of the
sizen = 24 under conventional Type-I censoring, we compared the number of failures
observed at each stress level forτ = 0.90 andτ = 1.50. Respectively, for this change
in τ , the mean number of failures observed in the first stress level jumps from 9.244 to
13.346 while dropping from 10.440 to 9.264 for the second stress level. Under progressive
censoring withπ∗ = 0.20, there are even fewer failures observed at the second stress
level, averages of 8.355 and 7.424. Regardless of the marginal estimations, a longer test
duration eventually provides a better chance to collect more failure data, improving the
overall information quality. This translates to less relative influence of the prior on the
posterior, and it is reflected in the posterior covariance betweenλ1 andλ2 decreasing with
increasingτ as shown in Tables 1 and 2.

As stated earlier, based on the sensitivity analyses to the hyperparameters, a negligible
impact was observed on all the measures considered in this study when changing the rate
hyperparametersγ1 andγ2 of the joint prior ofλ1 andλ2. On the contrary, the shape hy-
perparametersα1 andα2 of the joint prior have exhibited more drastic and negative impact
on the inference forλ1 andλ2. Increasing these shape hyperparameters can blow up the
uncertainty aroundλ1 andλ2 as well as the magnitude of overestimation. In order to com-
pensate for this concern about large shape hyperparameters, one should secure a budget
to accommodate a very large sample size in practice. From the computational viewpoint,
large shape hyperparameters are also troublesome as they require more iterative sum oper-
ations for calculation of the posterior distribution, tending to accumulate numerical errors
more rapidly. Without strong prior knowledge and/or preference on these shape hyperpa-
rameters, it is therefore recommended to choose smaller shape hyperparameters in practice
in order to enhance both inferential and computational performances.

5. Illustrative Example

Using the described Bayesian framework, inference for the simple step-stress test data of
solar lighting devices as seen in Han and Kundu (2015) was conducted. In the solar lighting
device dataset, the stress factor was temperature, which was noted to typically operate at
293K but was ramped up to 353K for the study. For this illustration, the two failure modes
of the device were ignored. The stress was changed atτ1 = 5 (hundred hours) and Type-I
censoring occurred atτ2 = 6 (hundred hours). For the first stress level, there weren1 = 16
failures and for the second stress level, there weren2 = 15 failures; 4 observations were
right censored.
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Table 1: Marginal Simulation Results for n = 24,α1 = α2 = 2, γ1 = γ2 = γ

λ1 λ2

γ τ π∗ Mean Median Mode Variance Mean Median Mode Variance Covariance

0.0001

0.9
0% 1.240 1.207 1.140 0.131 3.681 3.587 3.395 0.993 0.042
10% 1.242 1.209 1.142 0.132 3.788 3.682 3.468 1.143 0.044
20% 1.245 1.211 1.143 0.133 3.913 3.794 3.552 1.363 0.047

1.2
0% 1.220 1.192 1.136 0.108 3.766 3.664 3.458 1.134 0.034
10% 1.221 1.194 1.137 0.108 3.871 3.758 3.528 1.358 0.036
20% 1.223 1.195 1.138 0.109 4.008 3.880 3.619 1.597 0.038

1.5
0% 1.210 1.186 1.136 0.093 3.887 3.772 3.539 1.420 0.031
10% 1.212 1.188 1.138 0.094 4.035 3.906 3.644 1.711 0.032
20% 1.214 1.189 1.139 0.095 4.182 4.037 3.742 2.023 0.035

0.0010

0.9
0% 1.240 1.207 1.140 0.131 3.680 3.586 3.394 0.993 0.042
10% 1.242 1.209 1.142 0.132 3.787 3.681 3.467 1.142 0.044
20% 1.245 1.211 1.143 0.133 3.912 3.793 3.551 1.362 0.047

1.2
0% 1.220 1.192 1.136 0.108 3.765 3.663 3.457 1.133 0.034
10% 1.221 1.194 1.137 0.108 3.870 3.757 3.527 1.356 0.036
20% 1.223 1.195 1.138 0.109 4.006 3.878 3.618 1.596 0.038

1.5
0% 1.210 1.186 1.136 0.093 3.886 3.771 3.538 1.418 0.031
10% 1.212 1.188 1.138 0.094 4.033 3.905 3.642 1.709 0.032
20% 1.214 1.189 1.139 0.095 4.181 4.036 3.740 2.020 0.035

Table 2: Marginal Simulation Results for n = 48,α1 = α2 = 2, γ1 = γ2 = γ

λ1 λ2

γ τ π∗ Mean Median Mode Variance Mean Median Mode Variance Covariance

0.0001

0.9
0% 1.179 1.161 1.126 0.065 3.167 3.121 3.026 0.412 0.012
10% 1.179 1.162 1.127 0.065 3.209 3.157 3.052 0.463 0.013
20% 1.180 1.163 1.127 0.065 3.268 3.210 3.091 0.531 0.014

1.2
0% 1.171 1.156 1.127 0.053 3.197 3.148 3.049 0.441 0.010
10% 1.171 1.156 1.127 0.053 3.251 3.196 3.086 0.498 0.011
20% 1.171 1.157 1.127 0.053 3.306 3.244 3.119 0.574 0.012

1.5
0% 1.164 1.152 1.126 0.046 3.263 3.208 3.098 0.505 0.009
10% 1.165 1.152 1.126 0.046 3.328 3.267 3.144 0.577 0.010
20% 1.165 1.152 1.127 0.046 3.403 3.334 3.195 0.668 0.010

0.0010

0.9
0% 1.179 1.161 1.126 0.065 3.167 3.120 3.026 0.412 0.012
10% 1.179 1.162 1.127 0.065 3.209 3.157 3.052 0.463 0.013
20% 1.180 1.163 1.127 0.065 3.268 3.209 3.090 0.531 0.014

1.2
0% 1.171 1.156 1.127 0.053 3.197 3.148 3.048 0.441 0.010
10% 1.171 1.156 1.127 0.053 3.250 3.196 3.085 0.498 0.011
20% 1.171 1.157 1.127 0.053 3.305 3.244 3.118 0.574 0.012

1.5
0% 1.164 1.152 1.126 0.046 3.262 3.208 3.098 0.504 0.009
10% 1.165 1.152 1.126 0.046 3.327 3.267 3.143 0.577 0.010
20% 1.165 1.152 1.127 0.046 3.402 3.334 3.194 0.668 0.010

Using hyperparametersα1 = α2 = 2 and γ1 = γ2 = 0.001, the observed reliability
characteristics of a solar lighting device included the values provided in Table 7. The
boundaries of the joint credible region for(λ1, λ2) as described in Section 3 were found to
be(0.0686184, 0.2059834) and(1.058771, 3.271246). This rectangular region is depicted
in Figure 1. This volume is estimated to be roughly92%. Marginal credible intervals were
obtained as(0.074376, 0.194507) and(1.150563, 3.085970).
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Table 3: Marginal Credible Intervals for n = 24,α1 = α2 = 2, γ1 = γ2 = γ

λ1 λ2

γ τ π∗ 95% Interval Width Cover% 95% Interval Width Cover%

0.0001

0.9
0% (0.588, 1.950) 1.362 95.7% (1.940, 5.594) 3.653 91.7%
10% (0.588, 1.955) 1.367 95.6% (1.933, 5.835) 3.902 91.5%
20% (0.588, 1.961) 1.372 95.6% (1.925, 6.120) 4.196 91.2%

1.2
0% (0.624, 1.864) 1.240 95.1% (1.950, 5.766) 3.816 92.1%
10% (0.625, 1.867) 1.242 95.3% (1.939, 6.010) 4.071 91.7%
20% (0.625, 1.870) 1.246 95.3% (1.932, 6.319) 4.387 90.1%

1.5
0% (0.652, 1.811) 1.159 95.7% (1.944, 6.039) 4.095 90.7%
10% (0.652, 1.815) 1.163 95.6% (1.947, 6.359) 4.412 90.0%
20% (0.653, 1.818) 1.165 95.5% (1.941, 6.692) 4.752 90.3%

0.0010

0.9
0% (0.588, 1.950) 1.362 95.7% (1.940, 5.592) 3.652 91.8%
10% (0.588, 1.955) 1.367 95.6% (1.932, 5.833) 3.901 91.5%
20% (0.588, 1.961) 1.372 95.6% (1.924, 6.118) 4.194 91.2%

1.2
0% (0.624, 1.864) 1.240 95.1% (1.949, 5.764) 3.815 92.2%
10% (0.625, 1.867) 1.242 95.3% (1.939, 6.008) 4.069 91.7%
20% (0.625, 1.870) 1.246 95.3% (1.931, 6.317) 4.385 90.1%

1.5
0% (0.652, 1.811) 1.159 95.7% (1.943, 6.037) 4.093 90.7%
10% (0.652, 1.815) 1.163 95.6% (1.947, 6.357) 4.410 90.0%
20% (0.653, 1.818) 1.165 95.5% (1.940, 6.689) 4.749 90.3%

Table 4: Marginal Credible Intervals for n = 48,α1 = α2 = 2, γ1 = γ2 = γ

λ1 λ2

γ τ π∗ 95% Interval Width Cover% 95% Interval Width Cover%

0.0001

0.9
0% (0.706, 1.682) 0.976 95.1% (1.992, 4.424) 2.432 93.9%
10% (0.706, 1.683) 0.977 95.2% (1.969, 4.540) 2.571 93.5%
20% (0.706, 1.685) 0.979 94.8% (1.948, 4.691) 2.743 93.7%

1.2
0% (0.740, 1.626) 0.885 95.0% (1.988, 4.492) 2.503 93.0%
10% (0.740, 1.626) 0.886 94.7% (1.973, 4.624) 2.650 92.7%
20% (0.740, 1.627) 0.887 94.6% (1.947, 4.773) 2.826 93.7%

1.5
0% (0.762, 1.588) 0.825 95.7% (1.984, 4.637) 2.653 92.6%
10% (0.762, 1.588) 0.826 95.6% (1.971, 4.791) 2.819 92.0%
20% (0.762, 1.589) 0.827 95.6% (1.954, 4.972) 3.018 91.4%

0.0010

0.9
0% (0.706, 1.682) 0.976 95.1% (1.991, 4.423) 2.432 93.9%
10% (0.706, 1.683) 0.977 95.2% (1.969, 4.539) 2.570 93.5%
20% (0.706, 1.685) 0.979 94.8% (1.948, 4.690) 2.743 93.8%

1.2
0% (0.740, 1.626) 0.885 95.0% (1.988, 4.491) 2.503 93.0%
10% (0.740, 1.626) 0.886 94.7% (1.973, 4.623) 2.650 92.8%
20% (0.740, 1.627) 0.887 94.6% (1.947, 4.772) 2.825 93.7%

1.5
0% (0.762, 1.588) 0.825 95.7% (1.983, 4.636) 2.653 92.6%
10% (0.762, 1.588) 0.826 95.6% (1.971, 4.790) 2.819 92.0%
20% (0.762, 1.589) 0.827 95.6% (1.954, 4.971) 3.017 91.4%

6. Design Optimization

For design optimization, the hyperparameters of the prior as seen in Equation 2 were set as
α1 = α2 = 2, γ1 = 1.809675 andγ2 = 1.23984. These selections were made to make the
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Table 5: Joint Credible Intervals for n = 24,α1 = α2 = 2, γ1 = γ2 = γ

95% Joint HPD Credible Region
γ τ π∗ Range ofλ1 Range ofλ2 Joint Cover% Actual Volume

0.0001

0.9
0% (0.534, 2.099) (1.728, 5.903) 93.6% 91.9%
10% (0.534, 2.105) (1.712, 6.171) 93.8% 91.9%
20% (0.534, 2.112) (1.692, 6.490) 94.2% 91.9%

1.2
0% (0.572, 1.994) (1.741, 6.104) 93.4% 91.8%
10% (0.572, 1.998) (1.722, 6.377) 92.9% 91.8%
20% (0.572, 2.003) (1.704, 6.722) 92.4% 91.9%

1.5
0% (0.601, 1.931) (1.732, 6.415) 92.2% 91.8%
10% (0.601, 1.935) (1.725, 6.772) 91.7% 91.8%
20% (0.601, 1.939) (1.709, 7.144) 91.4% 91.8%

0.0010

0.9
0% (0.534, 2.099) (1.728, 5.901) 93.6% 91.9%
10% (0.534, 2.105) (1.711, 6.170) 93.8% 91.9%
20% (0.534, 2.111) (1.692, 6.487) 94.2% 91.9%

1.2
0% (0.572, 1.994) (1.741, 6.102) 93.4% 91.8%
10% (0.572, 1.998) (1.721, 6.374) 92.9% 91.8%
20% (0.572, 2.002) (1.703, 6.719) 92.4% 91.9%

1.5
0% (0.601, 1.930) (1.731, 6.412) 92.2% 91.8%
10% (0.601, 1.935) (1.725, 6.769) 91.7% 91.8%
20% (0.601, 1.938) (1.708, 7.140) 91.4% 91.8%

Table 6: Joint Credible Intervals for n = 48,α1 = α2 = 2, γ1 = γ2 = γ

95% Joint HPD Credible Region
γ τ π∗ Range ofλ1 Range ofλ2 Joint Cover% Actual Volume

0.0001

0.9
0% (0.660, 1.776) (1.851, 4.629) 94.3% 91.8%
10% (0.660, 1.777) (1.823, 4.759) 94.4% 91.8%
20% (0.660, 1.779) (1.794, 4.929) 94.6% 91.8%

1.2
0% (0.697, 1.709) (1.848, 4.708) 93.8% 91.8%
10% (0.697, 1.710) (1.827, 4.856) 93.7% 91.8%
20% (0.697, 1.710) (1.794, 5.024) 93.4% 91.8%

1.5
0% (0.721, 1.664) (1.840, 4.872) 94.2% 91.8%
10% (0.721, 1.665) (1.821, 5.044) 93.1% 91.8%
20% (0.721, 1.666) (1.797, 5.246) 93.5% 91.8%

0.0010

0.9
0% (0.660, 1.776) (1.851, 4.629) 94.3% 91.8%
10% (0.660, 1.777) (1.822, 4.759) 94.4% 91.8%
20% (0.660, 1.779) (1.794, 4.928) 94.6% 91.8%

1.2
0% (0.697, 1.709) (1.848, 4.708) 93.9% 91.8%
10% (0.697, 1.710) (1.827, 4.855) 93.7% 91.8%
20% (0.697, 1.710) (1.794, 5.023) 93.4% 91.8%

1.5
0% (0.721, 1.664) (1.840, 4.871) 94.2% 91.8%
10% (0.721, 1.665) (1.821, 5.043) 93.1% 91.8%
20% (0.721, 1.666) (1.797, 5.246) 93.5% 91.8%

prior distribution informative and to also follow choices made for the related Frequentist
work (Han and Bai, 2020). In addition to considering rate parameterizations, we also used
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Table 7: Solar Lighting Device Results for n = 35,α1 = α2 = 2, γ1 = γ2 = 0.001

λ1 λ2

Mean Median Mode Variance Mean Median Mode Variance Covariance

0.132 0.130 0.125 0.001 2.083 2.042 1.961 0.253 0.000

Figure 1: Contour Plot ofπ(λ1, λ2|t) for the Solar Light Data

a linear link to express the exponential rate parameters as a regression function of the stress
level, specificallyλi = β0 + β1xi. The stress level settings werex1 = 0.1 andx2 = 1.

The design criteria explored included an information theoretic consideration,H-optimality,
as well as various criteria based on the posterior variance-covariance matrix for bothλ and
β, optimality designsA, C, D, E andM . H-optimality was defined as the value that
maximizes the utility functionUH(·), the expected information gain based on the posterior
entropy as in Lindley (1956).

UH(·) = Et[

∫

π(λ|t) log π(λ|t)dλ−

∫

π(λ) log π(λ)dλ]

A, C, D, E andM optimality designs are modified versions of those known under the
Frequentist setting. Specific adjustments were made to conform the ranges of the utility
functions toR. WhereV is the posterior variance-covariance matrix, these functions are
defined as follows:
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UA(·) = E[− log tr(V )]

UC(·) = E[− log Vβ[1, 1]]

UD(·) = E[− log det(V )]

UE(·) = E[− logmax eigenvalue(V )]

UM (·) = E[− logmax(V [1, 1], V [2, 2])]

A-optimality was then identified as the value that maximizesUA(·), the expected neg-
ative log of the the trace of the posterior variance-covariance matrix.C-optimality was
identified as the value that maximizesUC(·), the expected negative log of the posterior vari-
ance at normal operating conditions, the first element in Equation 10.D-optimality criteria
was identified as the value that maximizesUD(·), the expected negative log of the determi-
nant of the posterior variance-covariance matrix.E-optimality criteria was identified as the
value that maximizesUE(·), the expected negative log of the maximum eigenvalue of the
posterior variance-covariance matrix. Lastly,M -optimality criteria was identified as the
value that maximizesUM (·), the expected negative log of the maximum posterior variance.

The posterior variance-covariance matrix ofβ is given as:

Vβ =
(

x2

1
v(λ2|t)+x2

2
v(λ1|t)−2x1x2c(λ1,λ2|t)
(x2−x1)2

−x1x2

(x2−x1)2

[ v(λ1|t)
x1 − ( 1

x1
+ 1

x2
)c(λ1, λ2|t) +

v(λ2|t)
x2

]

−x1x2

(x2−x1)2

[ v(λ1|t)
x1 − ( 1

x1
+ 1

x2
)c(λ1, λ2|t) +

v(λ2|t)
x2

] v(λ2|t)+v(λ1|t)−2c(λ1,λ2|t)
(x2−x1)2

)

.

(10)
Here v(·) represents the variance and c(·) is the covariance. These values are obtained

from using Equations 7, 8, and 9.
The results to follow are based off ofm = 1000 simulations withn = 24 and then

repeated forn = 48. Given the progressive Type-I censoring scheme, choices for the
proportion of surviving units to censor after the first level were chosen asπ = 0%, π =
10% andπ = 20%. Only equal step durations were considered for this study. The results in
Tables 8 and 9 show,∆∗, the optimal values forτ (the total test duration), andU∗, the value
of the utility function evaluated at∆∗. Algorithm 2 was adapted from Hong et al. (2014)
and shows the approach taken for the simulation of criteria related to the posterior variance-
covariance matrix. For the last item in this algorithm, theoptimize function from the
software packageR was used. Due to the stochastic nature of this simulation, various local
minimums were observed. With this, we note that some optimality criteria results show
curious patterns for∆∗ asπ∗ increases. After preparing these results, we noticed that most
of the values of∆∗ for D-optimality were the same for bothλ andβ. Mathematically the
utility functions were found to be proportional to one another. ForH-optimality, we used
an additional 1000 samples for each of the 1000 simulatedλ values. For eachλi the log of
the prior was computed as well as the mean of the log for the 1000 posteriors. The utility
function was then computed as the difference in the mean of the mean of the log for the
posteriors and the mean of the log for the priors.
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Algorithm 2 Stochastic Algorithm

1. Simulatem samples ofλ from the prior in Equation 2.

2. For eachλi, simulaten random samples ofti from the likelihood in Equation 1.

3. For eachti, compute the posterior variance-covariance matrixVi for λi (orβi based
on a linear link using that in 10).

4. Compute the value of a respective utility functionU(∆) by obtaining the mean of
the simulated measures,

∑m
i=1 g(Vi)/m with an appropriate transformationg(·).

5. Identify the value of∆ which maximizesU(∆).

Table 8: Design Optimization Based on the Variance-Covariance Matrix ofβ0 andβ1.

D-optimality C-optimality A-optimality M-optimality E-optimality
n π∗

∆
∗ U∗

∆
∗ U∗

∆
∗ U∗

∆
∗ U∗

∆
∗ U∗

24
0% 2.42301 3.69274 7.84469 -0.10721 1.49730 0.54488 1.21766 0.72288 1.23000 0.68171
10% 3.13124 3.64830 7.06943 -0.11295 1.32684 0.49567 1.09724 0.65724 1.24140 0.62389
20% 3.27426 3.58631 7.91807 -0.12232 1.44988 0.43266 1.13214 0.59185 1.26578 0.55759

48
0% 2.31228 4.77175 6.17256 -0.25870 1.28886 1.02870 1.14192 1.19298 1.11259 1.14516
10% 2.49016 4.70252 6.17522 -0.27149 1.37042 0.96781 1.06377 1.12625 0.98991 1.07539
20% 2.29750 4.62478 5.26573 -0.28468 1.29105 0.90029 0.99203 1.04713 0.99090 1.00511

Table 9: Design Optimization Based on the Variance-Covariance Matrix ofλ1 andλ2.

H-optimality D-optimality A-optimality M-optimality E-optimality
n π∗

∆
∗ U∗

∆
∗ U∗

∆
∗ U∗

∆
∗ U∗

∆
∗ U∗

24
0% 3.18320 1.59285 2.42301 3.90346 1.24943 0.74869 1.24396 0.92023 1.24397 0.89607
10% 3.00969 1.57049 3.13124 3.85902 1.34591 0.68594 1.24141 0.84956 1.24028 0.82618
20% 3.77340 1.54362 3.27526 3.79654 1.38578 0.61774 1.12210 0.77392 1.24961 0.75272

48
0% 2.35778 2.09843 2.31228 4.98247 1.15106 1.27669 1.04426 1.44659 1.03553 1.42792
10% 2.36064 2.06612 2.49016 4.91324 1.11147 1.20838 1.06364 1.36927 1.06662 1.35264
20% 2.33393 2.02840 2.30025 4.83524 0.99187 1.12303 0.99186 1.28136 0.99091 1.26541

7. Conclusion

Using a 3-parameter gamma distribution as a conditional prior, we have performed Bayesian
estimation and design optimization for progressively Type-I censored simple SSALTs un-
der continuous inspections assuming that the lifetimes are exponential and that a cumulative
exposure model holds. This prior ensures that the failure rates increase as the stress level
increases. This prior leads to a tractable joint posterior distribution, which is a mixture of
gamma densities.

Using hyperparameters that result in a relatively objective prior for inference, we no-
ticed in our simulation study that the variability for estimates ofλ2 was quite high compared
to that ofλ1 and that the coverage percentage was less than desired. This issue appears to
be rectifiable though. A quick test using different durations forτ and another using an
informative prior both showed better results forλ2. Using hyperparameters that result in an
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informative prior for design optimization, we are able to recommend values ofτ , the total
test duration, that can be used in test planning under various design criteria.

Our future work includes extending this framework to the interval monitoring setting
and to explore different censoring schemes. Additionally, we are interested in extending
this to the generalk-level SSALT. In regards to design optimization, we would like to
explore results for other criteria such as minimizing the variance of a target quantile and
also to consider flexible/non-uniform stress durations.
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