Abstract:
|
Randomized experimentation is widely used in the internet industry to measure the metric impact obtained by different treatment variants. A/B tests identify the treatment variant showing the best performance, which then becomes the chosen or selected treatment for the entire population. However, the effect of a given treatment can differ across experimental units and a personalized approach for treatment selection can greatly improve upon the usual global selection strategy. In this work, we develop a framework for personalization through (i) estimation of heterogeneous treatment effect at either a cohort or member-level, followed by (ii) selection of optimal treatment variants for cohorts (or members) obtained through (deterministic or stochastic) constrained optimization. We also demonstrate the effectiveness of the method through a real-life example related to serving notifications at Linkedin. Any marketing experiment can leverage this framework for maximizing the benefits across a global population.
|