Online Program Home
  My Program

All Times EDT

Abstract Details

Activity Number: 442 - Disease Prediction, Statistical Methods for Genetic Epidemiology and Mis
Type: Contributed
Date/Time: Thursday, August 12, 2021 : 4:00 PM to 5:50 PM
Sponsor: Section on Statistics in Epidemiology
Abstract #318130
Title: Multi-Objective, Model-Based Reinforcement Learning for Infectious Disease Control
Author(s): Runzhe Wan* and Xinyu Zhang and Rui Song
Companies: North Carolina State University and North Carolina State University and North Carolina State University
Keywords: COVID-19; Sequential decision making; Epidemiology

Severe infectious diseases such as the novel coronavirus (COVID-19) pose a huge threat to public health. Stringent control measures, such as school closures and stay-at-home orders, while having significant effects, also bring huge economic losses. In the face of an emerging infectious disease, a crucial question for policymakers is how to make the trade-off and implement the appropriate interventions timely, with the existence of huge uncertainty. In this work, we propose a Multi-Objective Model-based Reinforcement Learning framework to facilitate data-driven decision making and minimize the long-term overall cost. Specifically, at each decision point, a Bayesian epidemiological model is first learned as the environment model, and then the proposed model-based multi-objective planning algorithm is applied to find a set of Pareto-optimal policies. This framework, combined with the prediction bands for each policy, provides a real-time decision support tool for policymakers. The application is demonstrated with the spread of COVID-19.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2021 program