Online Program Home
My Program

Abstract Details

Activity Number:
369 - Section on Statistics and Data Science Education P.M. Roundtable Discussion (Added Fee)
Type: Roundtables
Date/Time: Tuesday, July 30, 2019 : 12:30 PM to 1:50 PM
Sponsor: Section on Statistics and Data Science Education
Abstract #305065
Title: Stats for Data Science
Author(s): Daniel Kaplan*
Companies: Macalester College
Keywords: data science; computing; education; R

As universities and colleges rush to offer courses and even degree programs in data science, it's fair to wonder whether data science is genuinely new or is merely a rebranding of statistics. This round-table will discuss important and substantial ways that a statistics course that genuinely engages data science differs from traditional statistics. These include an emphasis on prediction, classification and causality rather than the traditional focus on estimation and significance. As a background for the discussion, you may want to refer to a new book, *Stats for Data Science* (available at which provides ideas for topics and pedagogy. The book illustrates some of the ways that opening up the intro statistics curriculum to data science can make statistics courses more useful and exciting and better correspond to the precepts of the ASA GAISE report and the ASA statement on p-values.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2019 program