Online Program Home
My Program

Abstract Details

Activity Number: 300 - Innovations in and Applications of Imputation
Type: Contributed
Date/Time: Tuesday, July 30, 2019 : 8:30 AM to 10:20 AM
Sponsor: Government Statistics Section
Abstract #304723 Presentation
Title: Imputation in the American Housing Survey: Comparing Multiple Imputation with Current Hot Deck Methods
Author(s): Sean Dalby*
Companies: US Census Bureau
Keywords: Multiple Imputation; Structural Zeros; Complex Survey Design; Hot Deck; Fully Conditional Specification; Bayesian Methods

Multiple imputation is an active field of statistical research, encompassing a wide variety of modeling methods with different strengths and weaknesses. This paper provides a theoretical overview and empirical comparisons between multiple imputation – specifically, Fully Conditional Specification – and traditional hot deck imputation in the context of the American Housing Survey. The hot deck method stratifies across demographic and housing-level characteristics to form donor cells of similar housing units. Unlike the hot deck, Fully Conditional Specification methods allow for a wider array of models, and provide well-researched methods for estimating the amount of variance introduced by imputation itself. Both are compared against hurdles present within the American Housing Survey, including numerous structural zeros, thereby highlighting the benefits and trade-offs of each imputation approach.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2019 program