Abstract:
|
In many applications, data come with a natural ordering. This ordering can often induce local dependence among nearby variables. However, in complex data, the width of this dependence may vary, making simple assumptions such as a constant neighborhood size unrealistic. We propose a framework for learning this local dependence based on estimating the inverse of the Cholesky factor of the covariance matrix. Penalized maximum likelihood estimation of this matrix yields a simple regression interpretation for local dependence in which variables are predicted by their neighbors. Our proposed method involves solving a convex, penalized Gaussian likelihood problem with a hierarchical group lasso penalty. The problem decomposes into independent subproblems which can be solved efficiently in parallel using first-order methods. Our method yields a sparse, symmetric, positive definite estimator of the precision matrix, encoding a Gaussian graphical model. We derive theoretical results not found in existing methods attaining this structure. Empirical results show our method performing favorably compared to existing methods.
|