Online Program Home
My Program

Abstract Details

Activity Number: 170
Type: Contributed
Date/Time: Monday, August 1, 2016 : 10:30 AM to 12:20 PM
Sponsor: Social Statistics Section
Abstract #320413 View Presentation
Title: Finding Event Transitions in Twitter Data
Author(s): Ame Osotsi* and Qunhua Li
Companies: and Penn State University
Keywords: Changepoint Analysis ; Hidden Markov Model ; Twitter
Abstract:

Twitter is one of the most popular social networking websites, with millions of active users. These users tweet in real time about significant events in their lives, so it is possible to use the stream of tweets to detect major events. In this paper, we investigate tweets from Purdue University during two events - a local shooting on Jan 21 2014, and the Superbowl on Feb 2 2014. We use a Hidden Markov Model-based change point algorithm to detect the beginning of each event, and to break them up into sub-events. We then use a parametric bootstrap technique to find confidence intervals on the location of the change points. Finally we pick out the representative tweets between change points, thus giving an interpretation of the sub-events.


Authors who are presenting talks have a * after their name.

Back to the full JSM 2016 program

 
 
Copyright © American Statistical Association