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Introduction

Respondent-driven sampling (RDS)is a chain-referral type of sampling method primariy utiized for reaching hidden
populations whose sampling frame is unknown (see, for example, Heckathorn 1997, Gile etal. 2018). Wit this
‘sampling method, there is a tendency highly connected p

Homophily) Much of the curret research nto RDS sampling methodology has focused on estimator properties for
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Respondent-Driven Sampling

‘The populations studiied using RDS are often small but highly-connected populations that are hard to reach using
‘conventional sampling methods. RDS sampling starts by purposefully recruiting and surveying a small number of
TSt sl i ooy o e e o e e e e oy Cher o)
il e et eers i popiahcn S e ok scca et e s ot
recruits and they give Tn ol socal notwork Theso waves
i fesired sample size is met. Figure 1 shows a simulated
sample of size 100 with 7 seeds and 1-3 coupons used per recruit. Because recruitment for an RDS sample comes
from an individual's social network, this sampling method can be useful when studying stigmatized populations like
sexworkers or drug users.

Figure 1: an tree with 7 seeds created RDStreeboot (Baraff, 2016)

Modeling with RDS data

non-random. Every recriting
participant is expected to find further participants from their existing contacts. Psychologists have noted that people
fend to associate wih people who ave ais n oo withthem This tendency Isknown as “homophly” and
represents a significant violation of the default f individuals.

RDS creates samples that cannot be assumed to accurately represent a random sample from the overall population.
Most of the inferential work done with RDS data has focused on parameter point and interval estimation, often for
proportions (see, for example, Verdery et al. 2015). Less work has been done to study how homophily affects our
abilty to mode relationships.
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Simulation Study

We used simulations to determine the impact of homophily from an RDS sample on estimators from a logistic:
regression model. Our simulation steps were:

1 Create a population of N=1000 nodes with a continuous explanatory trai (‘age").
Construct a binary response trait (‘health’) based on the logistic model.

health ~ Bern(6) log it(8) = ~10 + 0.4(age)

2 Create a social network by adding edges (sacial connections) between nodes that
‘depend on fixed homophily parameters (see below).

3 Take an RDS sample using 3 seeds, a max of 3 coupons and sample size of n=100. The
number of available coupons that successfully recruit a new node is randomly
determined (between 1-3). The R package RDStreeboot was used o generate the.

sample (Baraff 2016).

4, For the RDS sample, ft a logistic GLM for the response "health given "age” and save
Clfor Pt pe (age

5 Repeat Steps 3-4 1,000 times.
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7. Repeat Steps 2.6 with phily p: properties from Step
6 depend on homophily.

In Step 2, we induce homophily into our population's social network by increasing the likelinood of connection
between similar nodes, either based on health, age, or both. We also created networks in which similar nodes were
less likely to be connected, creating anti-homophily. This was accomplished as follows:

1 11 andx, of nodes i and j, then
their values as
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2 For each pair (1), compute a similariy index
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3 Repeat Steps 1-2 for the second variable so that both age and health have separate

(univariate) similarity measures, W, a0 Wy,

4, Fix homophily parameters a,._ and a, ., then compute the probabilty of an edge (social
‘connection) between nodes (1

ePage Wage, i = health Whealth i
i 1 4 e¥e9cWage ij T health Wheatth,ij

5 Use a Benouli draw to determine if an edge exists between nodes (1)
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Figure 2: Homophily in age, measured as the propomnn of edges that are betwssn T L
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Simulation Results
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Figure 3: Bias percentages across age homophily faceted by negative, neutral, and positive health coefficients
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We populations.
the same homophily direction (i., both variables induced with anti-homophily or both variables induced with
homophily) were found to have positive bias values, indicating that the logistic GLM estimator was systematically
overestimating B,. With an increased magnitude from matching homophily directions, more distinct groups of
individuals were formed, resulting in less overlap in age for those who carried the health trait and those who did not
(Fig. 4). For example, in Figure 4, we are more likely to see pockets of individuals who both have the same health
outcome and are of similar ages. Consequently, based on our logistic regression model, an increase of 1 year in age
‘would have a larger impact on the probability of an individual carrying the health trait relative to the truth in these
populations.
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Simulation Results (cont.)

the bias in an estimator. We found RMSE inherently
e T measuring bias. We also observed similar bias and RMSE trends for
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Discussion and Future Work
dicat the finite population from an RDS

sample can lead to biased estimators with less than nominal confidence interval coverage rates. Bias is most
‘extreme when there s the same “type” of homophily (homophily or anti-homophily) with respect to both the response.

ias is slightly the “opposite” homophily exists with the two variables.
But, I two variables are pastively reated in the popuiaton, hen they may be mere ikely have the same type of
homophily direction influencing the RDS sample, leading to potentially more extreme bias in estimation

We also obtained pr its based on the h proposed by Spiller (2009).
Tris model was simiar to T EoEEE T but included a random effect to account for clustering (similariies)
e recruited by model

erore, we ha e number ofcoupon isriouted by sach recruter at 8, faner tha eting he humber of
‘coupons used vary as we originally had done. Even with this change, our simulations for a small number of
2 of B,

We are interested in studying the potential of ths random effects model but make adluslmlmsfur T
estimation. One solution would be than 3.
‘Atemaivey, we could ncreass the number of seeds and use afandom efect at th recrutment reelovel e
than at the recruiter level. This would result in fewer random effects to estimate with more individual observations
per effect.
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