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Abstract

• Multi-study factor analysis (MSFA) is a method for performing
factor analysis on measurements obtained across multiple studies
[1].

• MSFA identifies a set of latent factors shared among studies and a
set of latent factors that are specific to each study.

• Gaussian graphical models (GGMs) are networks of nodes
corresponding to variables and weighted edges corresponding to
partial correlations between variables.

• GGM estimation provides scope for network-level analysis of
conditional dependencies present in a set of variables.

• In this work, we leverage the MSFA framework to estimate shared
and study-specific GGMs.

Multi-Study Factor Analysis (MSFA)

Multi-Study Factor Analysis (MSFA) is a form of factor analysis that
estimates shared factors and study-specific factors:

xis = �fis + �slis + eis (1)

• xis is a P ◊ 1 vector of measured variables for the i
th observation

in study s

• � is a P ◊ K matrix of shared loadings
• fis is a K ◊ 1 vector of shared factors, assumed to be ≥ N(0, 1)
• �s is a P ◊ Js matrix called of study-specific loadings
• lis is a Js ◊ 1 vector of study-specific factors, assumed to be

≥ N(0, 1)
• eis is the residual error, with ei ≥ NP (0P , �) where

� = diag(Â1, . . . , ÂP ) is a diagonal matrix
Under these assumptions, the data are distributed as:

xis ≥ MV N(0P , �s = ��T + �s�T
s + �s (2)

Gaussian Graphical Models (GGMs)

• Gaussian graphical models (GGMs, also known as partial
correlation networks) are a commonly used graphical model for
multivariate normal data [2]. In a GGM, nodes correspond to
variables (e.g., genes, proteins, metabolites) and edges correspond
to partial correlations between variables.

• MSFA assumes multivariate normal data, so data analyzed with
this methods can also be analyzed with correlation networks and
GGMs.

• For multivariate normal data with covariance matrix �, GGM
estimation takes advantage of the following relationship between
the partial correlation Êi,j|X≠i,≠j

and the precision matrix � = �≠1

([3]):
Êi,j|X≠i,≠j

= ≠ ◊ijÔ
◊ii

p
◊jj

(3)

• Edges in a GGM therefore correspond to nonzero entries of �, and
edge weights are calculated from � with the formula above

• Edges indicate conditional dependence, where the conditioning is
on the state of the rest of the network nodes

• Conditional dependence, i.e., edges, between two nodes means that
the observed association between two nodes cannot be explained
through associations with any of the other nodes in the network.

Covariance Matrix Decomposition with

MSFA-X

Figure 1:Under the MSFA-X model formulation, the covariance matrix of the
data in the s

th study can be decomposed as �s = ��T + �s�T
s + � + Hs.

Here, we show the decomposition for simulated data. Our goal is to recover
this decomposition for a given input dataset.

−4

−3.27

−2.55

−1.82

−1.09

−0.36

0.36

1.09

1.82

2.55

3.27

4

Σ 1

−2

−1.64

−1.27

−0.91

−0.55

−0.18

0.18

0.55

0.91

1.27

1.64

2

ΦΦT

−2

−1.64

−1.27

−0.91

−0.55

−0.18

0.18

0.55

0.91

1.27

1.64

2

Λ1Λ1
T

0

0.17

0.33

0.5

0.67

0.83

1

Γ

0

0.17

0.33

0.5

0.67

0.83

1

H1

−4

−3.27

−2.55

−1.82

−1.09

−0.36

0.36

1.09

1.82

2.55

3.27

4

Σ 2

−2

−1.64

−1.27

−0.91

−0.55

−0.18

0.18

0.55

0.91

1.27

1.64

2

ΦΦT

−2

−1.64

−1.27

−0.91

−0.55

−0.18

0.18

0.55

0.91

1.27

1.64

2

Λ2Λ2
T

0

0.17

0.33

0.5

0.67

0.83

1

Γ

0

0.17

0.33

0.5

0.67

0.83

1

H2

Figure 2:The shared and study-specific precision matrices are shown here.
Left, (��T +�)≠1; center, (�1�T

1 +H1)≠1; right, (�2�T
2 +H2)≠1. Estimation

of these matrices allows us to estimated shared and study-specific GGMs.
Red indicates positive values; blue, negative.
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Figure 3:Shared and study-specific GGMs for study 1 and study 2 in the
above example. Edge width is proportional to magnitude of partial corre-
lation between two variables. Red indicates positive values; blue, negative.
Note that the sign of the partial correlation is opposite of the sign of the
corresponding precision matrix entry, so red edges in the network match blue
entries in the precision matrix and vice-versa.

ECM Algorithm for MSFA-X

1: Initialize ◊0 = (�0, �0
1, . . . , �0

S , �0, H
0
1, . . . , H

0
S)

2: Specify nIt = number of iterations
3: for t in 1:nIt do

4: E-step: calculate Q(◊) = E[¸c(◊|x, ◊(t))]
5: CM-1 step: �t+1 Ω argmax�Q(◊|�t

1, . . . , �t
S , �t, H

t
1, . . . , H

t
S)

6: for s in 1:S do

7: CM-2 step: �t+1
s Ω argmax�sQ(◊|�(t+1), �t, H

t
1, . . . , H

t
S)

8: end for

9: CM-3 step: �t+1 Ω argmax�Q(◊|�t+1, �t+1
1 , . . . , �t+1

S , H
t
1, . . . , H

t
S)

10: for s in 1:S do

11: CM-4 step: H
t+1
s Ω argmaxHsQ(◊|�(t+1), �(t+1)

1 , . . . , �t+1
S , �t+1)

12: end for

13: end for

Extended Multi-Study Factor Analysis (MSFA-X)

Suppose we reformulate the MSFA model as:

xis = �fis + �slis + gis + his (4)
where we model two sources of noise, an overall noise gis and a study-
specific noise his, each distributed as follows:

• gis ≥ NP (0, �)
• � = diag(“1, . . . , “P )
• his ≥ NP (0, Hs)
• Hs = diag(÷1s, . . . , ÷Ps)

Under these assumptions, the data are distributed as:

xis ≥ MV N(0P , �s = ��T + �s�T
s + � + Hs) (5)

How MSFA-X Estimates Shared and

Study-Specific GGMs

MSFA does not allow estimation of a shared and study-specific covari-
ance or precision matrix. The decomposition �s = ��T + �s�T

s + �s

cannot be split into shared and study-specific components, since the
noise term �s contains shared and study-specific noise. MSFA-X de-
composes the term �s into a shared noise component � and a study-
specific noise component Hs (see Figure 1). This decomposition gives
the following conditional distributions:

• Study-specific

• Conditional covariance: Cov(xis|fis, gis) = �s�T
s + Hs

• Conditional precision: �xis|fis,gis
= (�s�T

s + Hs)≠1

• Shared

• Conditional covariance: Cov(xis|lis, his) = ��T + �
• Conditional precision: �xis|lis,his

= (��T + �)≠1

These conditional precision matrices are used to construct shared and
study-specific GGMs using the relationship in Equation (3). An exam-
ple is shown in Figure 2 and Figure 3.

Parameter Estimation with

Expectation-Conditional Maximization (ECM)

• To estimate the parameters in the MSFA-X model, we build on
the work of [4], [5], and [1] in applying a variant of the
expectation-maximization algorithm.

• To simultaneously maximize our objective function over all
parameters in the model is not computationally feasible. However,
coupling an E-step with a sequence of conditional M-steps is a
solution to this problem ([5]).

• We describe this algorithm at left.

Simulation Study Design

The ability of the original ECM algorithm to correctly recover the
shared and study-specific factor loadings has been previously demon-
strated via simulation study in [1]. We performed a comparable
simulation study with our extended algorithm, assessing recovery of
�, �s, �s, �, and Hs, s = 1 . . . S. Starting parameters were:

• S = 2 studies
• k = 1 shared latent factor
• j1 = j2 = 1 study-specific factor per study
• n1 = n2 = 2000 samples per study
• Nonzero entries of � ≥ Unif(≠1, 1)
• Nonzero entries of �s ≥ Unif(≠1, 1), s = 1, . . . , S

• diag(�) ≥ Unif(1, 2)
• diag(Hs ≥ Unif(1, 2), s = 1, . . . , S

Simulation Study Results

Figure 4:An example of estimated GGMs (left), true GGMs (center), and er-
ror (calculated as estimated - true partial correlations; right) for one iteration
of the simulation study. The network structure of the true GGM is largely
recovered using the MSFA-X algorithm.

Figure 5:Boxplots show the correlation between the true parameter values
and the estimated parameter values over 100 iterations using 10 predictors,
starting the algorithm with the factor analysis method described in [1]. While
some parameters are well-estimated, others show a modest correlation.

Discussion of Simulation Study Results

• With the setting above, we ran 100 simulations. An example of
the results of one simulation is shown in Figure 4. To assess how
well true parameters are recovered from the simulated data, we
measured the absolute value of the correlation between true and
estimated parameters. (Absolute value is used because of sign
indeterminacy in factor analysis.)

• The factor loading parameters � and �s are estimated very well;
the noise parameters � and Hs show modest correlation with the
true values.

• We hypothesize that there may be a region of possible solutions
for � and Hs rather than a unique solution, leading to the lower
absolute correlation observed for these parameters vs. that
observed for � and �s. This is an important area of further
exploration.

• The algorithm does not always converge correctly for certain
starting values or simulation settings.

Future Work

Our studies demonstrate that this approach has potential to correctly
estimate the shared and study-specific noise parameters � and Hs, but
that further improvements are needed, including:

• Assess identifiability of the solution for � and Hs; explore more
thorough simulation settings and understand convergence
problems better.

• Improve algorithm speed; solving for � requires solving p

polynomial equations per iteration, which is time-consuming and
not feasible for high-dimensional data.

• Test algorithm on real multi-study data to determine feasibility of
estimation on practical values for sample size n and number of
predictors p.
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