BAYESIAN ANALYSIS OF SAFE RIDE PROGRAM WITH SAFE RIDE HOME VERSUS ANYWHERE POLICIES

Collegiate Safe Ride Programs: RamRide

- Traditional college aged students are at increased risk for traffic-related fatalities many of which are due to driving under the influence of alcohol or other illicit substances.
- Safe Ride Programs provide transportation to college students in an effort to reduce drugged driving.
- We compare ridership under safe ride home and safe ride anywhere policies.
- -Home is defined as a house, apartment, residence hall, or hotel,
- Anywhere is defined as any home or business address.
- Specifically, we evaluate the effects of a collegiate safe ride program, RamRide at Colorado State University (CSU), switching from a safe ride home to a safe ride anywhere. This intervention included two major changes:
- 1. students could be dropped off at any establishment in the service area, Fort Collins, CO,
- 2. students could be picked up at the residence halls.

The Model

• To estimate the effect of the intervention on ridership we implemented a fixed effect log-linear Poisson regression model. For the day i in year j the model is

 $Y \sim \text{Poisson}\left[\exp(\mu_0 + \mathbf{X}^T \boldsymbol{\beta})\right],$

where $\mu_0 = \log\left(\frac{1}{n}\sum_{i=1}^n Y_i\right)$ is an offset, \mathbf{x}_{ij} is the data from the $(i,j)^{th}$ observation and β is a vector of our parameters.

• We apply Zellner's g prior to the regression coefficients. The prior is

 $oldsymbol{eta} \sim \mathcal{N}(\mathbf{0}, au^2 \mathbf{\Sigma})$ $\boldsymbol{\Sigma} = (\boldsymbol{X}^T \boldsymbol{X})^{-1}$ $\tau^2 = 2$

- We estimated the unknown parameters β using Markov chain Monte Carlo by implementing an elliptical slice sampler[2].
- Primary Model
- Model 1: Fixed effects for day of week, week of semester, the interaction between the two, and an indicator for fall 2019
- Secondary Models
- Model 2: Model 1 with additional fixed effect for year
- Model 3: Model 1 only for fall 2018 and fall 2019
- Model 4: Model 1 with a fixed effect for home football game
- -Model 5: Model 1 with fixed effects for indicators of the 3 possible locations that a home football game could have been

The Data

• Data is used for the the first 8 weeks of operation for each fall semesters from 2013 to 2019.

Olivia Beck^{*} and Ander Wilson⁺

* Department of Statistics, Pennsylvania State University; olb5053@psu.edu; github.com/olbeck + Department of Statistics, Colorado State University; ander.wilson@colostate.edu

Results Old Town

Fig. 1: Heat maps of pick up and drop off locations from fall 2018 and 2019. All heat maps generated using ggmap package in R [1].

	Model	Estimate	Lower Bound	Upper Bound	
	Model 1	1.16	1.12	1.21	
	Model 2	1.18	1.13	1.25	
	Model 3	1.23	1.17	1.29	
	Model 4	1.16	1.12	1.21	
	Model 5	1.19	1.15	1.24	
Fig. 3: Estimated relative risk of completed rides following safe ride anywhere interv					
shows that there was a significant increase in the numbers of rides serviced in					

Model			
Model	1		
Model	2		

- Model 3
- Model 4
- Model 5

Fig. 4: Estimated relative risk of cancelled rides following safe ride anywhere intervention. The table shows that there was a significant increase in the numbers of rides cancelled in fall 2019.

- (CI: 1.12, 1.20)
- -70% increase in the amount of rides cancelled with a relative risk estimate of 1.70 (CI: 1.63, 1.78)
- More rides than RamRide can process in a timely manor Change in usage pattern
- Students requesting to be picked up directly at a residence hall
- Students requesting to be dropped off directly at Old Town (night life location) instead of near-by apartment complex (Uncommon).
- Expansion of service area leads to an increase in ridership - Additional incentive for student to use a ride share program instead of driving themselves
- Removes potentially intoxicated drivers from the road
- Ultimately making communities safer

archive/2013-1/kahle-wickham.pdf. 2009. arXiv: 1001.0175 [stat.CO].

Results

ention. The table n fall 2019.

Estimate Lower Bound Upper Bound

1.70	1.63	1.78
1.86	1.75	2.01
1.62	1.52	1.71
1.73	1.66	1.81
1.70	1.62	1.78

Conclusions

More students requesting to use RamRide's services

-16% increase in rides serviced with a relative risk estimate of 1.16

References

- [1] David Kahle and Hadley Wickham. "ggmap: Spatial Visualization with ggplot2". In: The R Journal 5.1 (2013), pp. 144-161. URL: https://journal.r-project.org/
- [2] Iain Murray, Ryan Prescott Adams, and David J. C. MacKay. *Elliptical slice sampling*.