NC STATE UNIVERSITY

Min Zhang(min_zhang@ncsu.edu), Gal Mishne(gmishne@ucsd.edu), Eric C. Chi(eric_chi@ncsu.edu) North Carolina State University, The University of California, San Diego, North Carolina State University

BACKGROUND

- In many machine learning problems, we need to compute weights that capture the proximity information of the data matrix.
- The choice of weights can dramatically affect the effectiveness of the algorithm.
- Nonetheless, the problem of choosing weights is not given enough study, and weights are usually picked by heuristics.
- In the presence of missing data, computing the weights is more difficult and complicated.

In this study,

- We construct row and column affinities simultaneously.
- This affinity metric leverages both row and column smoothness between pairs of rows and pairs of columns
- □ It exploits the coupled similarity structure when a fraction of data is missing.

METHODS

Given the partially observed data matrix,

- 1. We present the optimization problem as a co-clustering problem and solve it to obtain a smooth estimate of the observed data matrix and a filled-in data matrix.
- 2. A weighted distance between pairwise rows and columns is calculated based on the filled-in data matrix.
- 3. The procedure is repeated by varying the cost parameters of the optimization problem.
- 4. The new row and column multi-scale distances are obtained by summing over all weighted distances across different smoothness scales.

Co-Clustering-Missing

$$\begin{split} f(\boldsymbol{U};\gamma_r,\gamma_c) &= \frac{1}{2} \|\mathcal{P}_{\Theta}(\boldsymbol{X}) - \mathcal{P}_{\Theta}(\boldsymbol{U})\|_F^2 + \gamma_r J_r(\boldsymbol{U}) + \gamma_c J_c(\boldsymbol{U}) \\ \text{where} \\ J_r(\boldsymbol{U}) &= \sum_{(i,j)\in\mathcal{E}_r} \Omega(\|\boldsymbol{U}_{i\cdot} - \boldsymbol{U}_{j\cdot}\|_2), \quad J_c(\boldsymbol{U}) = \sum_{(i,j)\in\mathcal{E}_c} \Omega(\|\boldsymbol{U}_{\cdot i} - \boldsymbol{U}_{\cdot j}\|_2) \\ \Omega(z) &= \frac{1}{2} \int_0^z \frac{1}{\sqrt{u} + \epsilon} du \end{split}$$

Algorithm 1 CO-CLUSTERING-MISSING

Initialize U_0 and $\tilde{w}_{r,ii}, \tilde{w}_{c,ii}$ repeat $\tilde{X} \leftarrow \mathcal{P}_{\Theta}(X) + \mathcal{P}_{\Theta^{C}}(U_{t})$ $\tilde{w}_{r,ij} \leftarrow \Omega(||U_{t+1,i} - U_{t+1,j}||_2) \text{ for all } (i,j) \in \mathcal{E}_r$ $\tilde{w}_{c,ij} \leftarrow \Omega(||U_{t+1,i} - U_{t+1,j}||_2)$ for all $(i, j) \in \mathcal{E}_c$ until convergence Return { $U(\gamma_r, \gamma_c) = U_t, \tilde{X}, n_r, n_c$ }

Algorithm 2 Multi-scale Affinities with Missing Data

Initialize \mathcal{E}_r and \mathcal{E}_c Set $d(X_{i}, X_{i}) = 0$ and $d(X_{i}, X_{i}) = 0$ Set $n_r = m$, $n_c = n$, $k = k_0$ and $l = l_0$ while $n_r > 1$ do while $n_c > 1$ do $k \leftarrow k + 1$ end while $l \leftarrow l + 1$ Return $d(X_{i}, X_{j})$ and $d(X_{i}, X_{j})$

We show this multi-scale metric can

- weighting(IDW) method

$$v_{ij}(k,l) = \frac{\exp(1)}{\sum_{k'=1}^{n} \exp(1)}$$

matrix completion on graphs.

 $\min \frac{1}{2} ||\mathcal{P}_{\Theta}(X) - \mathcal{P}_{\Theta}(Z)||$

Multi-scale Affinities with Missing Data

 $\{U_{t+1}, n_r, n_c\} \leftarrow \text{CONVEX-BICLUSTER}(\tilde{X}, \gamma_r, \gamma_c, \{\tilde{w}_{r,ij}\}, \{\tilde{w}_{c,ij}\})$

 $\{U^{(l,k)}, \tilde{X}^{(l,k)}, n_r, n_c\} \leftarrow \text{CO-CLUSTER-MISSING}(\mathcal{P}_{\Theta}(X), \gamma_r = 2^l, \gamma_c = 2^k)$ Calculate $d(\tilde{X}_{i}^{(l,k)}, \tilde{X}_{i}^{(l,k)}) = (\gamma_r \gamma_c)^{\alpha} ||\tilde{X}_{i}^{(l,k)} - \tilde{X}_{i}^{(l,k)}||_2$ Calculate $d(\tilde{X}_{\cdot i}^{(l,k)}, \tilde{X}_{\cdot j}^{(l,k)}) = (\gamma_r \gamma_c)^{\alpha} ||\tilde{X}_{\cdot i}^{(l,k)} - \tilde{X}_{\cdot j}^{(l,k)}||_2$ Update row distances: $d(X_{i}, X_{j}) + = d(\tilde{X}_{i}^{(l,k)}, \tilde{X}_{j}^{(l,k)})$ Update column distances: $d(X_{i}, X_{i}) + = d(\tilde{X}_{i}^{(l,k)}, \tilde{X}_{i}^{(l,k)})$

$$(X_{\cdot j})$$

> captures the geometry of the complete data matrix and represents the row and column similarities

> avoid tuning and searching cost parameters

> serve as interpolation weights in the inverse distance

 $(-d_r(i,k))$ $\exp(-d_c(j,l))$ $\exp(-d_r(i,k')) \sum_{l'=1}^{p} \exp(-d_c(j,l'))$

serve in generating graph Laplacians in the problem of

$$|_{\rm F}^2 + \gamma_n ||Z||_* + \frac{\gamma_r}{2} tr(ZL_rZ) + \frac{\gamma_c}{2} tr(ZL_cZ)$$

Data	Impu	tati	on	

% misssing	IDW	2D Pyds	Mean	Freq	
20%	0.3596	0.3831	1.0024	3.091	
50%	0.4392	0.5198	0.9999	3.089	
80%	0.9341	0.7696	1.0028	2.800	
Table 1: RMSE for the Mice dataset ¹					

	% misssing	IDW	2D Pyds	Mean	Free
	20%	0.58716	0.7586	0.9952	3.270
	50%	0.6753	0.8207	1.0086	2.959
	80%	0.88398	0.9002	1.0205	2.205
Table 2: RMSE for the Voice dataset ²					

1. It contains expression levels of 66 proteins of 1000 patients. 2. It contains data for 126 patients and 309 features.

those missing entries.

- Running the multi-scale relieves us from tuning and choosing parameters.
- The data is imputed by IDW using multi-scale affinities as weights.

• We show these affinities can be used to perform tasks such as data imputation, matrix completion on graphs, and clustering.