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ABSTRACT

With improvements to cancer diagnoses and
treatments, incidences and mortality rates have
changed. However, the most commonly used
analysis methods do not account for such distri-
butional changes. In survival analysis, change
point problems can concern a shift in a distribu-
tion for a set of time-ordered observations, poten-
tially under censoring or truncation. We propose
a sequential testing approach for detecting multi-
ple change points in the Weibull accelerated fail-
ure time model, since this is sufficiently flexible
to accommodate increasing, decreasing, or con-

stant hazard rates and is also the only continu-
ous distribution for which the accelerated failure
time model can be reparametrized as a propor-
tional hazards model. Our sequential testing pro-
cedure does not require the number of change
points to be known; this information is instead
inferred from the data. We conduct a simulation
study to show that the method accurately detects
change points and estimates the model. The nu-
merical results along with a real data application
demonstrate that our proposed method can detect
change points in the hazard rate.

PROPOSED METHOD

Using the Weibull AFT model, we propose a
model that has a change point in the scale param-
eter:

λ(ti) =


λ1 if 0 < ti ≤ τ1
λ2 if τ1 < ti ≤ τ2

...
λk+1 if ti > τk

• 0 = τ0 < τ1 < · · · < τk < ∞: the change
points
• k: the number of change points
• α: the shape parameter
• β: the vector of regression coefficients
• Zi: the covariate vector for ith patient
• θ = (β, α, λ1, · · · , λk+1, τ1, · · · , τk)
• The hazard function for the change point

model:
h(ti;Zi) = αλjt

α−1
i exp(β′Zi)I(τj−1 < ti ≤ τj)

• The likelihood function of the Weibull AFT
change point model with θ:

L(θ) =

N∏
i=1

[f(ti;Zi)]
δi [S(ti;Zi)]

1−δi

Because the number of change points is assumed
to be unknown, we propose a sequential test-
ing procedure to determine the number of change
points in the Weibull AFT model using an alpha
spending function.

• In step m (m = 0, 1, 2, · · · ),
H0,m : k = m versus H1,m : k = m+ 1

• θ0,m and θ1,m: the vector of unknown pa-
rameters in the null and alternative models
in step m, respectively.

• The likelihood ratio test statistic at step m:
LRm = −2 [sup l(θ0,m)− sup l(θ1,m)]

• For the overall significance level α, we want
α∗(m) = α/2m, where α∗(m) is the signif-
icance level in step m. Therefore, α∗(1) >
α∗(2) > · · · > α∗(K).

Due to known issues with the distribution ofLRm,
we use a bootstrap procedure to estimate empiri-
cal distribution:

• Calculate the cumulative hazard estimate
Ĥ(ti) using the maximum likelihood esti-
mates θ̂0,m and the Kaplan–Meier estimate
Ŝc(ti) for the survival function of the cen-
soring variable Ci. The estimated survival
function for the observed time is given by
ŜH0,m

(ti) = exp
{
Ĥ(ti)

}
.

• Generate B simulated datasets based on
ŜH0,m corresponding to a true model un-
der the null, and the censoring distribution
Ŝc(ti). Calculate the likelihood ratio statistic
LRb

m, b = 1, . . . , B for each resampled trial.
• Reject the null hypothesis if LRm, the likeli-

hood ratio statistic calculated from the data,
is larger that the (1 − α∗(m)) × 100th per-
centile of

{
LRb

m, b = 1, . . . , B
}

.

SIMULATION STUDY
We conducted an extensive simulation study under several different sample sizes and censoring rates,
and found that our method accurately estimates the model with a reasonable power and Type I error.

Sample size Censoring rate Parameters Constant Hazard Model Proposed Model
MEAN MSE MEAN MSE

500
0% τ1 = 2.00 1.998† 0.001† 2.006 0.002

τ2 = 4.00 10.242† 62.442† 4.072 0.370

20% τ1 = 2.50 2.496 0.007 2.520 0.002
τ2 = 6.00 12.129 48.489 6.001 0.616

Table 1: Averaged point estimates and MSE values of the estimated parameters of the proposed model and piece-
wise constant hazard model of Goodman et al. (2011) based on 1000 replicated simulations for the two-change
point model with two continuous covariates. The † denotes a convergence issue for the piecewise constant hazard
method and that the simulated trials that had this issue were removed from the calculations.

Sample size Censoring rate True Model Detected Model
0 changes 1 change 2 changes 3 changes

500

0%
0 changes 0.945 0.045 0.010 0.000
1 change 0.005 0.948 0.047 0.000
2 changes 0.000 0.004 0.933 0.063

20%
0 changes 0.920 0.080 0.000 0.000
1 change 0.006 0.909 0.086 0.000
2 changes 0.000 0.150 0.810 0.040

Table 2: Power and Type I error results for the sequential hypothesis testing.

REAL DATA ANALYSIS
To examine prostate cancer mortality, we use
Surveillance, Epidemiology, and End Results pro-
gram (www.seer.cancer.gov) data.
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Figure 1: The Nelson–Aalen estimates by race are the
solid lines, while the dashed lines represent the pro-
posed method. The vertical dotted lines represent the
location of the change point estimates for the proposed
method.

CONCLUSION
• In this study, we present a sequential testing

procedure to determine the number of change
points in the Weibull AFT model using an alpha
spending function and select a parsimonious
model rather than an over-fitted one.

• The numerical examples show that our pro-
posed method is more flexible and accurate in
estimating the values of the parameters than
other models, making it effective in handling
cases with possible change points.

FUTURE RESEARCH
• To obtain accurate and reliable results, it is nec-

essary to evaluate the validity of the assump-
tions of the our proposed model and check the
adequacy of the model fit. However, in prac-
tice, the required assumptions of the model
might not be met. It is therefore important to
generalize our method to such a case as well.


