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Optimization problem for sparse signal and 
image recovery:

min
!
𝐹 𝑥 = "

#
𝑦 − 𝐴𝑥 #

# + 𝜇𝜙(𝑥)
where 𝑦 ∈ 𝑅$ is  the response, 𝐴 ∈ 𝑅$×& is a 
matrix, and 𝜙: 𝑅& → 𝑅 is the penalty term.
v Convex penalty
• Lasso, Group Lasso
• underestimate large magnitude components
v Nonconvex penalty
• MCP, SCAD
• better signal recovery but nonconvex 

optimization, computation difficulties
v Convexity-preserving nonconvex penalty
• generalized minimax concave (GMC) penalty

𝜙' 𝑥 = 𝑥 " − mi𝑛
(∈*!

{ 𝑣 " +
1
2
𝐵 𝑥 − 𝑣 #

#}
• convex optimization with nonconvex penalty
The linearly involved GMC model [1]:
min
!
𝐹+ 𝑥 = "

#
𝑦 − 𝐴𝑥 #

# + 𝜇𝜙' ∘ 𝐿 𝑥 (1)
where 𝐿 ∈ 𝑅,×& and 𝐵 ∈ 𝑅$×,. [1]  states that
𝐹+ maintains convex when B satisfies the  
convexity-preserving condition 

𝐴-𝐴 − 𝜇𝐿-𝐵-𝐵𝐿 ≽ 𝑂& (2)
q Contributions:
• New method to set B satisfying condition (2)
• A fast algorithm to solve model (1)
• Theoretical properties of the solution path

Find a matrix 𝑍 = 𝜇𝐵-𝐵 satisfying (2),
which is equivalent to find a pair of
symmetric matrices 𝑍 and 𝐷 satisfying the
following three conditions:

@
𝑍 ≽ 𝑂,
𝐿-𝑍𝐿 = 𝐷

𝐴-𝐴 − 𝐷 ≽ 𝑂&
(3)

v CQ algorithm
Let 𝐶 = 𝑍 ∈ 𝑅,×, 𝑍 ≽ 𝑂, and 𝐷 = {𝐷 ∈
𝑅&×&|𝐷 is symmetric and 𝜆& 𝐴-𝐴 − 𝐷 ≥
𝜎.} where 𝜎/ = 1 − 𝜃 𝜆& 𝐴-𝐴 ≥ 0 and
𝜃 ∈ 0, 1 . Here 𝜆& indicates the smallest
eigenvalue.
A solution to (3) solves the following split
feasibility problem:

Find 𝑍 ∈ 𝐶 with 𝐿-𝑍𝐿 = 𝐷,
which can be solved by CQ algorithm.

v ADMM algorithm
Define three sets in space Θ = 𝑅,×,×𝑅&×&:

𝐺 = 𝑍, 𝐷 ∈ Θ 𝐿-𝑍𝐿 = 𝐷
𝐶0 = 𝑍,𝐷 ∈ Θ 𝑍 ∈ 𝐶
𝑄0 = 𝑍,𝐷 ∈ Θ 𝐷 ∈ 𝑄

which are all nonempty, closed and convex.
Then finding 𝑍 satisfying (3) is finding a
point in the intersection of 𝐶′, 𝐺 and 𝑄′,
which can be solved by ADMM.

1. Abe, J. et.al, 2019. Convexity-edge-
preserving signal recovery with linearly 
involved generalized minimax concave 
penalty function. 

Model (1) can be written as a saddle-point
problem of the form:

min
!∈*!

max
(∈*"

𝑓 𝑥 + 𝑣-𝑃𝑥 − 𝑔(𝑣)
where 𝑓, 𝑔 are convex functions and 𝑃 = 𝑍𝐿.
The Primal-Dual Hybrid Gradient (PDHG) a
powerful tool for solving this problem.
• Note: Using matrix 𝑍, instead of 𝐵, avoids

redundant computations.

Properties of solution path
Theorem 1: Suppose 𝐴-𝐴 − 𝜇𝐵-𝐿-𝐿𝐵 ≻ 𝑂&,
then the solution 𝑥∗ 𝜇 to (1) exists, is
unique, and is continuous in µ.
Theorem 2: Let ]𝑥 be a solution to  

min
!

1
2
𝑦 − 𝐴𝑥 #

# s. t. Lx = 0
Then 𝐹+ in (1) is minimized by ]𝑥 for all 𝜇 ≥ 𝜇2,
where 𝜇2 = 𝐴- 𝐴]𝑥 − 𝑦 #/𝜎$3& (𝐿).

Numerical experiment
True image, 𝑆 ∈ 𝑅#2×#2, is a matrix in a shape
of triangle with entries 1 inside of the triangle
and −1 outside. The observation 𝑦 ∈ 𝑅42 is
generated by 𝑦3 = vec 𝑋3 -vec 𝑆 + 𝜖3 ,
where entries of 𝑋3 are drawn from 𝑁 0,1
and 𝜖3 are white Gaussian noise with standard
deviation σ. We compare the performance of
model (1) and 2-D TV.

Conclusion
Both CQ and ADMM algorithms work well to
produce Z matrix, and the linearly involved
GMC penalty has a better performance on
the estimate accuracy comparing with the
standard TV under different noise levels.


