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/ Introduction \
Optimization problem for sparse signal and

Image recovery:
min F(x) = ; lly — Axll3 + up (x)

where y € R™ is the response, A € R™*" is a
matrix, and ¢: R™ — R is the penalty term.
s Convex penalty
* Lasso, Group Lasso
* underestimate large magnitude components
** Nonconvex penalty
e MCP, SCAD
* better signal recovery but nonconvex

optimization, computation difficulties

¢* Convexity-preserving nonconvex penalty
e generalized minimax concave (GMC) penalty

1
¢p(x) = |lx|l; — min{llv|l; + = IB(x — v)|I5}
VERM 2

e convex optimization with nonconvex penalty

The linearly involved GMC model [1]:

min £, (x) = 5 lly = Axl13 + pepp o L) (1)
where L € R”™™ and B € R™*!, [1] states that
F; maintains convex when B satisfies the
convexity-preserving condition
ATA — ul"BTBL > 0,

1 Contributions:

* New method to set B satisfying condition (2)
e A fast algorithm to solve model (1)

(2)

-\Theoretical properties of the solutionv

\_

Algorithms for matrixh

Find a matrix Z = uB'B satisfying (2),
which is equivalent to find a pair of
symmetric matrices Z and D satisfying the
following three conditions:
Z 7 0
L"ZL =D
ATA—-D =0,

(3)

¢ CQ algorithm

let C={Z€eR™|Z>0,} and D={D €
R™™"|D is symmetric and A,,(ATA—D) >
o9} where gy = (1 —6)1,(ATA) >0 and
0 € (0,1). Here A, indicates the smallest
eigenvalue.
A solution to (3) solves the following split
feasibility problem:

Find Z € C with L' ZL = D,
which can be solved by CQ algorithm.

> ADMM algorithm

Define three sets in space ® = R>XIxR™*™.
G ={(Z D) €eO|L'ZL = D}
C'={(Z D) eO|Z e}

Q' ={(Z,D) € ©|D € ¢}

which are all nonempty, closed and convex.
Then finding Z satisfying (3) is finding a
point in the intersection of C’, G and Q’,

which can be solved by ADMM. J

mgorithm for model (m

Model (1) can be written as a saddle-point
problem of the form:

min max f (x
mip max f(x)

where f, g are convex functions and P = ZL.

The Primal-Dual Hybrid Gradient (PDHG) a

powerful tool for solving this problem.

 Note: Using matrix Z, instead of B, avoids
redundant computations.

Properties of solution path

Theorem 1: Suppose ATA — uB'L'LB > 0,,
then the solution x*(u) to (1) exists, is
unigue, and is continuous in .

Theorem 2: Let X be a solution to

v Px — g(v)

1
min = ||y — Ax||3 s.t.Lx = 0
x 2

Then F; in (1) is minimized by X for all u = u,,
where pg = ||A" (A% — Y)l2/Omin (L).

Numerical experiment

True image, S € R%9%20 is a matrix in a shape
of triangle with entries 1 inside of the triangle
and -1 outside. The observation y € R3Y is
generated by y; = vec(X;) vec(S) +¢; ,
where entries of X; are drawn from N(0,1)
and €; are white Gaussian noise with standard

deviation 0. We compare the performance of

W(l) and 2-D TV. J
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Figure 1: log(MSE) as a function of log(x). The limit of log(MSE) is obtained
by the x in Theorem 2.
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Figure 2: log(MSE) under different levels of noise.

Conclusion

Both CQ and ADMM algorithms work well to
produce Z matrix, and the linearly involved
GMC penalty has a better performance on
the estimate accuracy comparing with the
standard TV under different noise levels.
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