NC STATE UNIVERSITY

Revisiting Convexity-Preserving Signal Recovery with the Linearly Involved GMC Penalty XIAOQIAN LIU, ERIC CHI (xliu62@ncsu.edu, eric_chi@ncsu.edu)

Introduction

Optimization problem for sparse signal and image recovery:

 $\min_{x} F(x) = \frac{1}{2} \|y - Ax\|_{2}^{2} + \mu \phi(x)$

where $y \in \mathbb{R}^m$ is the response, $A \in \mathbb{R}^{m \times n}$ is a matrix, and $\phi: \mathbb{R}^n \to \mathbb{R}$ is the penalty term. Convex penalty

- Lasso, Group Lasso
- underestimate large magnitude components
- Nonconvex penalty
- MCP, SCAD
- better signal recovery but nonconvex optimization, computation difficulties

Convexity-preserving nonconvex penalty

generalized minimax concave (GMC) penalty

 $\phi_B(x) = \|x\|_1 - \min_{v \in \mathbb{R}^n} \{\|v\|_1 + \frac{1}{2} \|B(x - v)\|_2^2\}$

convex optimization with nonconvex penalty

The linearly involved GMC model [1]: $\min_{x} F_L(x) = \frac{1}{2} \|y - Ax\|_2^2 + \mu \phi_B \circ L(x) \quad (1)$ where $L \in \mathbb{R}^{l \times n}$ and $B \in \mathbb{R}^{m \times l}$. [1] states that F_L maintains convex when B satisfies the convexity-preserving condition

 $A^T A - \mu L^T B^T B L \ge O_n$

Contributions:

- New method to set B satisfying condition (2)
- A fast algorithm to solve model (1)
- Theoretical properties of the solution path

Algorithms for matrix B

Find following three conditions:

$$\begin{bmatrix} L \\ A^T A \end{bmatrix}$$

CQ algorithm

eigenvalue.

A solution to (3) solves the following split feasibility problem: Find $Z \in C$ with $L^T Z L = D$,

ADMM algorithm

ree sets in space
$$\Theta = R^{l \times l} \times R^{n \times n}$$
:
 $G = \{(Z, D) \in \Theta | L^T Z L = D\}$
 $C' = \{(Z, D) \in \Theta | Z \in C\}$
 $Q' = \{(Z, D) \in \Theta | D \in Q\}$
e all nonempty, closed and convex.
ding Z satisfying (3) is finding a
the intersection of C', G and Q',
h be solved by ADMM.

Define three sets in space
$$\Theta = R^{l \times l} \times R^{n \times n}$$
:
 $G = \{(Z, D) \in \Theta | L^T Z L = D\}$
 $C' = \{(Z, D) \in \Theta | Z \in C\}$
 $Q' = \{(Z, D) \in \Theta | D \in Q\}$
which are all nonempty, closed and convex.
Then finding Z satisfying (3) is finding a
point in the intersection of C', G and Q',
which can be solved by ADMM.

NORTH CAROLINA STATE UNIVERSITY

a matrix $Z = \mu B^T B$ satisfying (2), which is equivalent to find a pair of symmetric matrices Z and D satisfying the

$$Z \ge O_l$$

$$^T ZL = D \qquad (3)$$

$$A - D \ge O_n$$

Let $C = \{Z \in \mathbb{R}^{l \times l} | Z \ge O_l\}$ and $D = \{D \in \mathbb{R}^{l \times l} | Z \ge O_l\}$ $R^{n \times n} | D$ is symmetric and $\lambda_n (A^T A - D) \geq 1$ σ_{θ} where $\sigma_{\theta} = (1 - \theta)\lambda_n(A^T A) \ge 0$ and $\theta \in (0,1)$. Here λ_n indicates the smallest

which can be solved by CQ algorithm.

Algorithm for model (1)

Model (1) can be written as a saddle-point problem of the form:

 $\min_{x \in \mathbb{R}^n} \max_{v \in \mathbb{R}^l} f(x) + v^T P x - g(v)$

where f, g are convex functions and P = ZL. The Primal-Dual Hybrid Gradient (PDHG) a powerful tool for solving this problem.

• **Note:** Using matrix Z, instead of B, avoids redundant computations.

Properties of solution path

Theorem 1: Suppose $A^T A - \mu B^T L^T L B > O_n$, then the solution $x^*(\mu)$ to (1) exists, is unique, and is continuous in μ . **Theorem 2:** Let \tilde{x} be a solution to

 $\min_{x} \frac{1}{2} \|y - Ax\|_{2}^{2} \text{ s. t. Lx} =$

Then F_L in (1) is minimized by \tilde{x} for all $\mu \ge \mu_0$, where $\mu_0 = \|A^T (A\tilde{x} - y)\|_2 / \sigma_{min} (L)$.

Numerical experiment

True image, $S \in R^{20 \times 20}$, is a matrix in a shape of triangle with entries 1 inside of the triangle and -1 outside. The observation $y \in \mathbb{R}^{80}$ is generated by $y_i = \operatorname{vec}(X_i)^T \operatorname{vec}(S) + \epsilon_i$, where entries of X_i are drawn from N(0,1)and ϵ_i are white Gaussian noise with standard deviation σ . We compare the performance of model (1) and 2-D TV.

 $\log(MSE)$ as a function of $\log(\mu)$. The limit of $\log(MSE)$ is obtained by the $\mathbf{\tilde{x}}$ in Theorem 2.

Figure 2: log(MSE) under different levels of noise.

Conclusion

Both CQ and ADMM algorithms work well to produce Z matrix, and the linearly involved GMC penalty has a better performance on the estimate accuracy comparing with the standard TV under different noise levels.

Bibliography

Abe, J. et.al, 2019. Convexity-edgepreserving signal recovery with linearly involved generalized minimax concave penalty function.