NC STATE
 UNIVERSITY

Revisiting Convexity-Preserving Signal Recovery with the Linearly Involved GMC Penalty XIAOQIAN LIU, ERIC CHI (xliu62@ncsu.edu, eric_chi@ncsu.edu) NORTH CAROLINA STATE UNIVERSITY

Introduction

Optimization problem for sparse signal and image recovery:

$$
\min _{x} F(x)=\frac{1}{2}\|y-A x\|_{2}^{2}+\mu \phi(x)
$$

where $y \in R^{m}$ is the response, $A \in R^{m \times n}$ is a matrix, and $\phi: R^{n} \rightarrow R$ is the penalty term.

* Convex penalty
- Lasso, Group Lasso
- underestimate large magnitude components
* Nonconvex penalty
- MCP, SCAD
- better signal recovery but nonconvex optimization, computation difficulties
* Convexity-preserving nonconvex penalty
- generalized minimax concave (GMC) penalty
$\phi_{B}(x)=\|x\|_{1}-\min _{v \in R^{n}}\left\{\|v\|_{1}+\frac{1}{2}\|B(x-v)\|_{2}^{2}\right\}$ - convex optimization with nonconvex penalty

The linearly involved GMC model [1]:

$\min _{x} F_{L}(x)=\frac{1}{2}\|y-A x\|_{2}^{2}+\mu \phi_{B} \circ L(x) \quad$ (1)
where $L \in R^{l \times n}$ and $B \in R^{m \times l}$. [1] states that F_{L} maintains convex when B satisfies the convexity-preserving condition

$$
A^{T} A-\mu L^{T} B^{T} B L \succcurlyeq O_{n}
$$

\square Contributions:

- New method to set B satisfying condition (2)
- A fast algorithm to solve model (1)
- Theoretical properties of the solution path

Algorithms for matrix B

 Find a matrix $Z=\mu B^{T} B$ satisfying (2), which is equivalent to find a pair of symmetric matrices Z and D satisfying the following three conditions:$$
\left\{\begin{array}{c}
Z \geqslant O_{l} \tag{3}\\
L^{T} Z L=D \\
A^{T} A-D \succcurlyeq O_{n}
\end{array}\right.
$$

* CQ algorithm

Let $C=\left\{Z \in R^{l \times l} \mid Z \geqslant O_{l}\right\}$ and $D=\{D \in$ $R^{n \times n} \mid D$ is symmetric and $\lambda_{n}\left(A^{T} A-D\right) \geq$ $\left.\sigma_{\theta}\right\}$ where $\sigma_{\theta}=(1-\theta) \lambda_{n}\left(A^{T} A\right) \geq 0$ and $\theta \in(0,1)$. Here λ_{n} indicates the smallest eigenvalue.
A solution to (3) solves the following split feasibility problem:

Find $Z \in C$ with $L^{T} Z L=D$,
which can be solved by CQ algorithm.

* ADMM algorithm

Define three sets in space $\Theta=R^{l \times l} \times R^{n \times n}$:

$$
\begin{aligned}
G & =\left\{(Z, D) \in \Theta \mid L^{T} Z L=D\right\} \\
C^{\prime} & =\{(Z, D) \in \Theta \mid Z \in C\} \\
Q^{\prime} & =\{(Z, D) \in \Theta \mid D \in Q\}
\end{aligned}
$$

which are all nonempty, closed and convex. Then finding Z satisfying (3) is finding a point in the intersection of C^{\prime}, G and Q^{\prime}, which can be solved by ADMM.

Algorithm for model (1)

Model (1) can be written as a saddle-point problem of the form:

$$
\min _{x \in R^{n}} \max _{v \in R^{l}} f(x)+v^{T} P x-g(v)
$$

where f, g are convex functions and $P=Z L$. The Primal-Dual Hybrid Gradient (PDHG) a powerful tool for solving this problem.

- Note: Using matrix Z, instead of B, avoids redundant computations.

Properties of solution path

Theorem 1: Suppose $A^{T} A-\mu B^{T} L^{T} L B>O_{n}$, then the solution $x^{*}(\mu)$ to (1) exists, is unique, and is continuous in μ.
Theorem 2: Let \tilde{x} be a solution to

$$
\min _{x} \frac{1}{2}\|y-A x\|_{2}^{2} \text { s.t. } \mathrm{Lx}=0
$$

Then F_{L} in (1) is minimized by \tilde{x} for all $\mu \geq \mu_{0}$, where $\mu_{0}=\left\|A^{T}(A \tilde{x}-y)\right\|_{2} / \sigma_{\min }(L)$.

Numerical experiment

True image, $S \in R^{20 \times 20}$, is a matrix in a shape of triangle with entries 1 inside of the triangle and -1 outside. The observation $y \in R^{80}$ is generated by $y_{i}=\operatorname{vec}\left(X_{i}\right)^{T} \operatorname{vec}(S)+\epsilon_{i}$ where entries of X_{i} are drawn from $N(0,1)$ and ϵ_{i} are white Gaussian noise with standard deviation σ. We compare the performance of model (1) and 2-D TV.

Both CQ and ADMM algorithms work well to produce Z matrix, and the linearly involved GMC penalty has a better performance on the estimate accuracy comparing with the standard TV under different noise levels.

Bibliography

1. Abe, J. et.al, 2019. Convexity-edgepreserving signal recovery with linearly involved generalized minimax concave penalty function.
