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Isomap Procedure for Manifold Learning

What is Manifold Learning?
“Just as PCA and MDS are guaranteed, given sufficient data, to
recover the true structure of linear manifolds, Isomap is
guaranteed asymptotically to recover the true dimensionality and
geometric structure of a strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds whose intrinsic geometry is
that of a convex region of Euclidean space, but whose ambient
geometry in the high-dimensional input space may be highly
folded, twisted, or curved. For non-Euclidean manifolds, such as a
hemisphere or the surface of a doughnut, Isomap still produces a
globally optimal low-dimensional Euclidean representation, as
measured by Eq. 1.” - (Tenenbaum et al., 2000)

a. Manifold

➢ “In the case of ISOMAP, the nonconvexity causes a
strong dilation of the missing region, warping the
rest of the embedding.” - (Donoho & Grimes, 2003)

➢ Or has Isomap constructed a reasonable Euclidean
representation of the geodesic structure of a non-
Euclidean manifold?

Is this a failure of Isomap? 

Manifold Learning as
Parametrization Recovery

Manifold Learning as
Representing the Geodesic Structure

b. Euclidean representation 
of Riemannian distances.
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c. Euclidean representation 
of shortest path distances.

(Isomap output with 𝜖 = 0.4)

Shortest Path 
Distances

↓
Geodesic 
Distances 

Given: feature vectors 𝑥1, … , 𝑥𝑛 ∈ 𝑀 ⊂ 𝑅𝑞 and a target dimension d.
1. Construct an 𝜖-neighborhood or 𝐾-nearest neighbor graph of the

observed feature vectors. Weight the edge between 𝑥𝑖 ↔ 𝑥𝑗 by

𝑥𝑖 − 𝑥𝑗 .

2. Compute the dissimilarity matrix Δ = [𝛿𝑗𝑘], where 𝛿𝑗𝑘 is the

shortest path distance on the graph between the vertices 𝑥𝑗 and

𝑥𝑘. The key idea that underlies Isomap is that shortest path
distances on a locally connected graph approximate Riemannian
distances on the underlying Riemannian manifold 𝑀.

3. Embed Δ in 𝑅𝑑. Traditionally, Isomap embeds by classical multi-
dimensional scaling (CMDS); however, if one’s goal is to
approximate shortest path distance with Euclidean distance, the
one might prefer to embed differently, e.g., by minimizing
Kruskal’s raw stress criterion. Theorem: Let 𝑀 ⊂ 𝑅𝑞 be a compact connected Riemannian

manifold and let 𝜇 be any probability measure on (𝑀, 𝐵)
such that 𝜇(𝐵(𝑚, 𝑟)) > 0 for every 𝑚 ∈ M and 𝑟 > 0.
Suppose that 𝑥1, 𝑥2, … ∼

𝑖𝑖𝑑 𝜇 and let 𝑉𝑛 = {𝑥1, … , 𝑥𝑛}.
• For 𝜖 > 0, let 𝐺𝑛,𝜖 = (𝑉𝑛, 𝐸𝑛,𝜖) be a graph with vertex set

𝑉𝑛 and edges between 𝑥𝑖&𝑥𝑗 if and only if 𝑥𝑖 − 𝑥𝑗 ≤ 𝜖.

• Let 𝑑𝑛,𝜖 denote shortest path distance on 𝐺𝑛,𝜖 with edge

weights 𝑥𝑖 − 𝑥𝑗 .

Then there exist sequences 𝑛𝑘 → ∞ and 𝜖𝑘 → 0 for which

sup
𝑚𝑎,𝑚𝑏∈𝑀

inf
𝑥𝑎,𝑥𝑏∈𝑉𝑛𝑘

𝑑𝑛𝑘,𝜖𝑘 𝑥𝑎, 𝑥𝑏 − 𝑑𝑀 𝑚𝑎, 𝑚𝑏 →𝑃 0

as 𝑘 → ∞.

Suppose that 𝑀 = 𝜓(Θ), where Θ is an open connected
subset of 𝑅𝑝. The goal is to recover the original isometric
coordinates 𝜃, up to a rigid motion.
But the only manifolds that are locally isometric to any
Θ ⊂ 𝑅𝑝 have zero Gaussian curvature, i.e., Swiss Rolls. This
is a very small subset of manifolds.
Perhaps Parametrization Recovery is not such a useful way
to think about manifold learning?

Conclusion: Convexity is not required for Isomap to

produce a useful low dimensional representation of the data.


