## A Spatio-Temporal Infectious Disease Model in the Presence of Uncertainty from Multiple, Imperfect Diagnostic Tests

Caitlin Ward

October 4, 2019

- Individual Level Models (ILMs) are used to study infectious disease dynamics while incorporating individual level characteristics
- ILMs are more realistic models of disease transmission
- ILMs use ideas from standard compartmental modeling (e.g. SIR, SEIR, SIS)



- Current infectious disease models assume all individuals that test positive on one or more diagnostic(s) are infected
- Diagnostics tests are not perfect, but their accuracy can be characterized by their sensitivity and specificity

## **Proposed Model**

- Our proposed model seeks to incorporate diagnostic testing information into the ILM framework
- We incorporate data models on the testing mechanism (whether or not an individual is tested) and the test results
- We assume there are infectious individuals that are not tested, and of those tested there are false positives
- The model is formulated in the Bayesian hierarchical framework, and computation of the posterior is done via MCMC methods
- The model is motivated by a mumps outbreak in Iowa from 2006

|          | Swab     |          |         |       |
|----------|----------|----------|---------|-------|
| Serum    | Positive | Negative | No Test | Total |
| Positive | 72       | 898      | 378     | 1348  |
| Negative | 114      | 0        | 0       | 114   |
| No Test  | 35       | 0        | 0       | 35    |
| Total    | 221      | 898      | 378     | 1497  |