Revisiting the Gelman-Rubin Diagnostic¹

Christina Knudson, Ph.D.

University of St. Thomas St. Paul, Minnesota

Women in Statistics and Data Science 2019

Background on Markov Chains (and Me)

Using Markov Chain Monte Carlo

Goal: Use Markov chain Monte Carlo (MCMC) to approximate a target distribution (e.g. an intractible posterior distribution)

Using Markov Chain Monte Carlo

Goal: Use Markov chain Monte Carlo (MCMC) to approximate a target distribution (e.g. an intractible posterior distribution)

Issue: After the chain has started sampling from the target distribution, how long should the sampler run to produce a decent approximation?

Using Markov Chain Monte Carlo

Goal: Use Markov chain Monte Carlo (MCMC) to approximate a target distribution (e.g. an intractible posterior distribution)

Issue: After the chain has started sampling from the target distribution, how long should the sampler run to produce a decent approximation?

Tool: Gelman-Rubin diagnostic (1992)

$$\hat{R} = \sqrt{rac{ ext{chain length} - 1}{ ext{chain length}} + rac{ ext{between-chain variance}}{ ext{within-chain variance}}$$

Gelman-Rubin: Is $\hat{R} < 1.1$ Small Enough?

 \hat{R} decreases to 1 as the chain length increases, but how small is small enough?

Gelman et al (2004):

For most examples, values below 1.1 are acceptable, but for a final analysis in a critical problem, a higher level of precision may be required.

\hat{R} thresholds used in 100 papers from 2017:

Ŕ	1.003	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.1	1.2	1.3
Freq.	1	12	9	9	2	11	2	1	43	9	1

Gelman-Rubin: $\hat{R} < 1.1$?

Reality: stopping at $\hat{R} = 1.1$ can be too early!

Vats and Knudson's Contributions

How can we improve the Gelman-Rubin diagnostic?

- Stabilize the Gelman-Rubin statistic
- 2 Construct principled threshold for terminating simulation (move away from $\hat{R} < 1.1$)

Stabilizing the Gelman-Rubin Statistic

Original calculation for between-chain variance is unstable

Lugsail batch means variance estimation is **stable** and overestimates between-chain variance

- $\Rightarrow \hat{R}$ is overestimated
- \Rightarrow Chain must run longer for \hat{R} to reach termination threshold

R command: stable.GR in R package stableGR

Stabilizing the Gelman-Rubin Statistic

An AR(1) process

$$Y_t = .95 \ Y_{t-1} + \epsilon_t, \quad t = 1, 2, ...$$

 $\epsilon_t \sim N(0, 1^2)$

is the same as a Markov chain with distribution N(0, 10.25641).

For each of 500 replications, we run five Markov chains until $\hat{R} < 1.001625$ using

- ullet original GR \hat{R} calculation (blue dots)
- VK \hat{R} calculation (green dots)

Stabilizing the Gelman-Rubin Statistic

Blue: original GR \hat{R} calculation.

Green: Vats and Knudson's new \hat{R} .

Effective sample size: number of uncorrelated samples that produce the same precision as the correlated (MCMC) sample.

V+K identified a one-to-one relationship between ESS and \hat{R} :

$$\hat{R} = \sqrt{rac{ ext{chain length} - 1}{ ext{chain length}}} + rac{ ext{number of chains}}{ ext{effective sample size}}$$

Effective sample size: number of uncorrelated samples that produce the same precision as the correlated (MCMC) sample.

V+K identified a one-to-one relationship between ESS and \hat{R} :

$$\hat{R} = \sqrt{rac{ ext{chain length} - 1}{ ext{chain length}}} + rac{ ext{number of chains}}{ ext{effective sample size}}$$

Upshot:

- Threshold can be calculated a priori
 - Similar to introductory statistics sample size calculations for a desired width of a confidence interval
 - Gong and Flegal (2016) and Vats et al. (2019)
- \hat{R} threshold is easily-interpretable

R commands in stableGR: target.psrf, n.eff

Model the log odds of surviving the Titanic's sinking.

Bayesian logistic regression with the following predictors:

- Fare class (3 categories)
- Sex (2 categories)
- Age (quantitative)
- Number of siblings/spouses aboard (quantitative)
- Number of parents/children aboard (quantitative)
- Port of embarkation (3 categories)

Model the log odds of surviving the Titanic's sinking.

Bayesian logistic regression with the following predictors:

- Fare class (3 categories)
- Sex (2 categories)
- Age (quantitative)
- Number of siblings/spouses aboard (quantitative)
- Number of parents/children aboard (quantitative)
- Port of embarkation (3 categories)

For each of 100 reps, we run 5 chains until convergence is diagnosed according to

- $\hat{R} < 1.1$
- VK's ESS-based \hat{R} termination threshold using VK's new \hat{R} calculation in both cases.

Centered posterior means (blue) and 95% credible interval estimates (green for lower bound, purple for upper bound).

Left points: $\hat{R} < 1.1$.

Right points: ESS-based \hat{R} threshold.

Bayesian Logistic Regression

What about Jack and Rose?

Bayesian Logistic Regression

Concluding Remarks

To review, we have:

- Stabilized the Gelman-Rubin statistic \hat{R} .
- Identified a one-to-one relationship between ESS and \hat{R} .
- ullet Created an interpretable stopping rule to replace $\hat{R} < 1.1$.

Additional information:

- Diagnostic is usable for multiple chains or a single chain.
- We have also stabilized the multivariate version of the Gelman-Rubin statistic and produced an interpretable stopping rule for multivariate chains.
- R package stableGR not yet available on CRAN.
 You can currently install it from Github.

More Information

cknudson.com

for links to

"Revisiting the Gelman-Rubin Diagnostic" on arXiv and the Github repo for R package stableGR

References

Brooks, S. P. and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. *Journal of Computational and Graphical Statistics*, 7:434-455.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). *Bayesian Data Analysis*. Chapman & Hall/CRC, Boca Raton, FL.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences (with discussion). *Statistical Science*, 7:457-472.

Gong, L. and Flegal, J. M. (2016). A practical sequential stopping rule for high-dimensional Markov chain Monte Carlo. *Journal of Computational and Graphical Statistics*, 25:684-700.

Vats, D. and Flegal, J. M. (2018). Lugsail lag windows and their application to MCMC. arXiv e-prints.

Vats, D., Flegal, J. M, and Jones, G. L. (2019). Multivariate output analysis for Markov chain Monte Carlo. *Biometrika*, 106(2):321-337.

Commands for Installing R Package stableGR from Github

```
#get some required packages
install.packages("Rcpp")
install.packages("RcppArmadillo")
install.packages("devtools")
  #install mcmcse from github (rather than CRAN)
library(devtools)
install_github("dvats/mcmcse")
  #install stableGR package
install_github("knudson1/stableGR/stableGR")
library(stableGR)
```

Will be available on CRAN in a couple months.