Delayed Phase Scan Prediction for Multiphase Liver CT Dose Reduction (310176) Bin Chen, Yihao Deng Purdue University Fort Wayne

Background

• A normal multiphase CT usually consists of four CT scans, one scan without contrast agent as the baseline and three scans at different times with intravenous-injected contrast agents.

Baseline	Hepatic artery	Portal vein	Delayed
	phase	phase	phase

Goals

 The objective of this study is to derive the delayed phase scan in the multiphase CT protocol from the other three scans using machine learning, which will reduce 25% radiation dose.

Methods

- Intra-subject 3D volume registration and liver segmentation
- Deep Learning: Modified U-Net architecture
- Input the difference between Hepatic Artery, Portal Vein phases and Baseline
- Predict the difference between Delayed phase and Baseline

4 of 7

Results

Error is the absolute difference between the ground truth and predicted images.

Conclusions

- The delayed phase images can be derived from the baseline, hepatic artery and portal vein phases in high accuracy.
- The dose in multiphase CT scans will be reduced 25% without the delayed phase scan.

References

- 1. Rastogi S, Singh R, Borse R, et al. Use of Multiphase CT Protocols in 18 Countries: Appropriateness and Radiation Doses. *Can Assoc Radiol J*. 2021;72(3):381-387. doi:10.1177/0846537119888390
- 2. Guite KM, Hinshaw JL, Ranallo FN, Lindstrom MJ, Lee FT Jr. Ionizing radiation in abdominal CT: unindicated multiphase scans are an important source of medically unnecessary exposure. J Am Coll Radiol. 2011;8(11):756-761. doi:10.1016/j.jacr.2011.05.011
- 3. O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention. Springer, 2015
- 4. Gong E, Pauly JM, Wintermark M, Zaharchuk G. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI: Deep Learning Reduces Gadolinium Dose. J Magn Reson Imaging. 2018;48(2):330-340. doi:10.1002/jmri.25970

Acknowledgements

This research was supported in part by a Grant-in-Aid at Purdue University Fort Wayne and Indiana Data Mine Lilly Endowment Grant.