

Variable Importance Confidence Intervals within Random Forest

DR. HEATHER COOK, UNIVERSITY OF SOUTHERN INDIANA (PRESENTER) DR. DANIEL KEENAN, UNIVERSITY OF VIRGINIA DR. DOUGLAS LAKE, UNIVERSITY OF VIRGINIA

Background: Random Forest Steps

- •Select the number of decision trees to build
- •For each tree:
 - Select a random sample with replacement
 - Build a decision tree and for each split:
 - Randomly select k predictors
 - Select the best predictor among those k selected to split the data
 - Observations out-of-bag (OOB) used to calculate variable importance (VIMP) per predictor
- •Collectively, these trees create the forest
- •Per variable, the VIMP is aggregated over all the trees

Background: Issues

Bootstrapping cannot be directly implemented to calculate VIMP confidence intervals

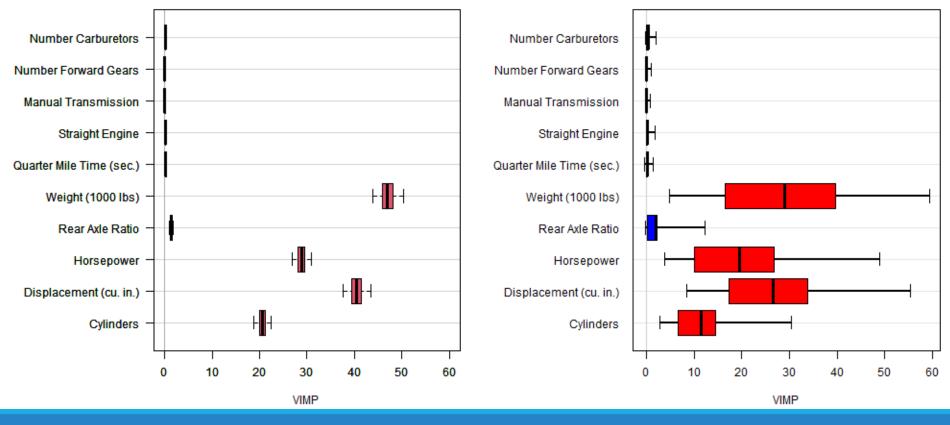
- Random forest already uses bootstrapping
 - Cannot guarantee that the OOB samples will be OOB and not also used to grow the tree
 - Currently available VIMP confidence interval methods are complex

Goals

- 1. Focus on standard R packages for random forest
 - randomForest
 - randomForestSRC

2. Explain our new method of calculating VIMP confidence intervals within a random forest model

- 3. Compare our new method to existing methods of VIMP confidence intervals
 - Existing methods (Ishwaran & Lu, 2018, "Standard Errors and Confidence Intervals for Variable Importance in Random Forest Regression, Classification, and Survival.")

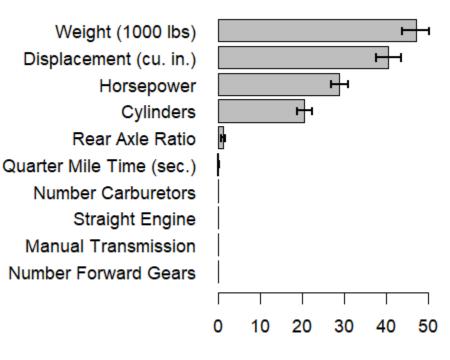

Our Method

- 1. Train a random forest for parameters
- 2. Create the random forest model with the selected parameter values
- 3. Extract the VIMP per each tree
- 4. Implement bootstrapping with the per tree VIMP values for each variable
 - i. Take a random sample with replacement of the per tree VIMP values
 - Calculate the mean VIMP from these values
 - ii. Repeat the previous step several times, say 1000 times
 - iii. Take the 2.5th and 97.5th percentiles of these 1000 means to create the 95% confidence interval for a variable's importance

OUR METHOD RESULTS

Our Bootstrapped 95% VIMP CI

ONE EXISTING METHOD RESULTS Nonparametric Double Bootstrapped 95% VIMP CI



SDSS 2022

Conclusion

- •Addition to interpretations of predictors and their order of importance:
 - 1-2. Weight or displacement (overlap)
 - 3. Horsepower
 - 4. Number of cylinders
- •Our method vs current methods is:
 - Faster than current methods
 - Easier to compute
 - Easier to plot and manipulate results in R

Mean Decrease in MSE VIMP

Future Work & Author Contacts

•Explore behavior via simulations & further compare to current methods

•Release R code to the public

Dr. Heather Cook Assistant Professor of Statistics University of Southern Indiana Department of Mathematical Sciences

8600 University Boulevard Evansville, IN 47712 USA

hlcook1@usi.edu

Dr. Daniel Keenan Professor Emeritus University of Virginia Department of Statistics

1827 University Avenue Charlottesville, VA 22904 USA

dmk7b@virginia.edu

Dr. Douglas Lake Professor University of Virginia Department of Medicine, Cardiovascular Medicine

1827 University Avenue Charlottesville, VA 22904 USA

del2k@virginia.edu

SDSS 2022

References

•Archer, Kellie J.; Kimes, Ryan V. "Empirical characterization of random forest variable importance measures." 2008

- •Grömping, Ulrike. "Variable Importance Assessment in Regression: Linear Regression versus Random Forest." 2009
- •Ishwaran, Hemant; Lu, Min. "Standard Errors and Confidence Intervals for Variable Importance in Random Forest Regression, Classification, and Survival." 2018

- •Janitza, Silke; Strobl, Carolin; Boulestix, Anne-Laure. "An AUC-based permutation variable importance measure for random forests." 2013
- •Sandri, Marco; Zuccolotto, Paola; "A Bias Correction Algorithm for the Gini Variable Importance Measure in Classification Trees." 2008
- •Strobl, Carolin; Boulesteix, Anne-Laure; Zeileis, Achim; Hothorn, Torsten. "Bias in random forest variable importance measures: Illustrations, sources and a solution." 2007