

Alternatives to ANOVA and Regression Amidst Non-normality: Relative Hypothesis Test Performance

Anthony J. Bishara¹, Bo Kai², & James B. Hittner¹ ¹Dept. of Psychology, ²Dept. of Mathematics

Background

- OLS Regression and ANOVA are perceived as "robust" to non-normal residuals
 - However, non-normality can lead to an opportunity cost whereby alternative models are more powerful
- Literature unclear on relative power of alternatives

- We considered nonparametric, robust, and transformation alternatives
- Emphasis on Inverse Normal Transformations (INTs)
 - popular in genome-wide association studies

•
$$INT(y_i) = \phi^{-1}\left(\frac{rank(y_i) - .5}{n}\right)$$

where Φ^{-1} = inverse normal CDF

SDSS 2022 E-Poster 10 (310195)

Methods

- Monte Carlo studies
 - We manipulated residual distributions, n, effect sizes, covariate sizes, predictor correlations, etc.
 - Examined 2,052 scenarios

Compared Type I Error & Power:-

- Parametric OLS Regression/ANOVA
- Rank-based Regression
- Robust MM Regression
 - with or without the Fast Robust Bootstrap (FRB)
- Transformation with OLS Regression
 - $-\ln(y)$
 - Box-Cox(y)
 - Direct INT(y)
 - Indirect INT(residuals)
 - Omnibus INT (see McCaw et al., 2020)
 - Cauchy aggregation of Direct & Indirect p-values
 - Conditional INT(y)
 - Transform only if significant normality test
 - Aligned Rank: rank(residuals)

Error Distribution

- Chi-squared
- Uniform
- **Psych./Ed. Distributions**
- Normal

Simulation

- 1: Simple Designs
- 2: Covariates
- 3: Indep. Factorial
- 4: Rep. Measures Factorial

Power by residual distribution (Simulation 1)

Indirect INT steps

Consider a model with <u>c covariates</u> and <u>p predictors of interest</u>

 Estimate residuals in a restricted model using only the <i>c</i> covariates 	$\hat{y}_i = \widehat{b_0} + \widehat{b_1}x_{1i} + \dots + \widehat{b_c}x_{ci} + \hat{\epsilon}_{1i}$
 Repeat with y replaced by the transformed residuals from step 1 	$INT(\hat{\epsilon}_{1i}) = \widehat{b_0} + \widehat{b_1}x_{1i} + \dots + \widehat{b_c}x_{ci} + \hat{\epsilon}_{2i}$
 Estimate the full model with transformed residuals from step 1 	$INT(\hat{\epsilon}_{1i}) = \\ \hat{b}_0 + \hat{b}_1 x_{1i} + \dots + \hat{b}_c x_{ci} + \\ \hat{b}_{c+1} x_{(c+1)i} + \dots + \hat{b}_{(c+p)} x_{(c+p)i} + \hat{\epsilon}_{3i}$
4) Compare models 2 & 3 with a nested <i>F</i> -test	$F_{p,n-c-p} = \frac{\{\sum_{i=1}^{n} (\hat{\epsilon}_{2i})^2 - \sum_{i=1}^{n} (\hat{\epsilon}_{3i})^2\}/p}{\{\sum_{i=1}^{n} (\hat{\epsilon}_{3i})^2\}/(n-c-p)}$

Simulation 2: Designs with Covariates Power Relative to OLS Regression

12 30

120

480

12 30

120 480

Alternative Method

- **Omnibus INT** -0-
- Indirect INT +
- Direct INT -D-

ANOVA

- **Rank Regression** - R-
- Aligned Rank -

12 30

120

480

12 30

120

480 Sample Size

Conclusions

Type I Error rates were inflated with:

- Rank-Based Regression for $n \le 30$
- MM Estimation $n \le 240$
 - with Fast Robust Bootstrap $n \le 60$
- Direct & Omnibus INT Interactions

Power:

- INTs usually matched or exceeded other methods' power
- Relative power of Direct vs. Indirect varied, but Omnibus INT approached whichever was better
- Conditioning INTs on normality tests provided no benefit (not shown here)

<u>Recommendation</u>: When the residual distribution is in doubt, use the Omnibus INT for main effects and Indirect INT for interactions.