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ERGM: A broad class of models for networks

What is an exponential-family random graph model (ERGM)?

Pθ(Y = y) = exp{θ⊤g(y)}
κ(θ)

where

▶ y is a realization of a network on a given set of nodes
▶ g(y) is a p-dimensional vector of statistics on y



Fitting an ERGM via maximum likeilhood can be easy. . .

form <- faux.mesa.high ~ edges + nodematch("Grade", diff=TRUE)
summary(ergm(form))$coef

## Estimate Std. Error MCMC % z value Pr(>|z|)
## edges -6.034045 0.1583030 0 -38.117059 0.000000e+00
## nodematch.Grade.7 2.847142 0.1973419 0 14.427454 3.476800e-47
## nodematch.Grade.8 2.914487 0.2381209 0 12.239528 1.911406e-34
## nodematch.Grade.9 2.438521 0.2640671 0 9.234476 2.595528e-20
## nodematch.Grade.10 2.557946 0.3736407 0 6.846005 7.594061e-12
## nodematch.Grade.11 3.310430 0.2962168 0 11.175702 5.362482e-29
## nodematch.Grade.12 3.731460 0.4565010 0 8.174045 2.982181e-16



. . . or fitting an ERGM via maximum likelihood can be hard

Recall that
Pθ(Y = y) = exp{θ⊤g(y)}

κ(θ) .

▶ Suppose y is an undirected binary network on n nodes
▶ Naive evaluation of κ(θ) involves summing 2(n

2) terms

MCMC-based approximation of the loglikelihood may be based on

κ(θ)
κ(θ0) = Eθ0

[
exp{(θ − θ0)⊤g(Y )}

]
by selecting Y1, . . . , Ym from a MC with limiting distribution Pθ0 .



MPLE: Another way to get an estimate of θ0

▶ MPLE = maximum pseudo-likelihood estimation

From
Pθ(Y = y) = exp{θ⊤g(y)}

κ(θ) ,

we obtain

log
Pθ(Yij = 1 | Y c

ij = y c
ij )

Pθ(Yij = 0 | Y c
ij = y c

ij )
= θ⊤

[
g(y+

ij ) − g(y−
ij )

]
,

where

▶ Y c
ij is all of Y except Yij (similarly for y c

ij )
▶ y+

ij is y c
ij along with yij = 1

▶ y−
ij is y c

ij along with yij = 0



MPLE: Another way to get an estimate of θ0

▶ With

logit Pθ(Yij = 1 | Y c
ij = y c

ij ) = θ⊤
[
g(y+

ij ) − g(y−
ij )

]
,

write ℓij(θ) as the conditional log-likelihood of Yij | Y c
ij .

▶ Then the pseudo-likelihood is

pℓ(θ) =
∑
i ,j

ℓij(θ).

and the MPLE is θ̃ = arg maxθ pℓ(θ).
▶ Dyadic Independence ERGM: If g(y) is defined so that the Yij

are mutually independent, then pℓ(θ) = ℓ(θ) and MLE=MPLE.
▶ An MPLE is easy to calculate via logistic regression.



MPLE via logistic regression: Standard errors are wrong

form <- faux.mesa.high ~ edges + nodematch("Grade", diff=TRUE) + triangle
summary(ergm(form, estimate = "MPLE"))$coef

## Estimate Std. Error MCMC % z value Pr(>|z|)
## edges -6.151667 0.1603438 0 -38.365483 0.000000e+00
## nodematch.Grade.7 1.940629 0.2230463 0 8.700564 3.302376e-18
## nodematch.Grade.8 1.900893 0.2868344 0 6.627144 3.422427e-11
## nodematch.Grade.9 2.188814 0.2796815 0 7.826094 5.032614e-15
## nodematch.Grade.10 2.515165 0.3777922 0 6.657535 2.784575e-11
## nodematch.Grade.11 2.710927 0.3263737 0 8.306205 9.881162e-17
## nodematch.Grade.12 3.225686 0.4994717 0 6.458195 1.059592e-10
## triangle 2.174185 0.1162932 0 18.695718 5.364334e-78



Why use MLE in the first place?

▶ The MLE is the method of moments estimator:

Eθ̂ [g(Y )] = g(yobs)

▶ Unlike MPLE, MLE satisfies the likelihood principle:
All information in the data relevant to the model parameters
is contained in the likelihood function.

▶ Ideally, the MLE is also consistent, asymptotically normal.

▶ In practice, the ease of obtaining an MPLE can belie serious
problems with the choice of g(y).



Correcting MPLE for model misspecification

▶ Write
s(θ) = ∇pℓ(θ)

and
J(θ) = −∇2pℓ(θ) = −∇s(θ).

▶ The usual Taylor expansion gives

(θ̃ − θ) ≈ [J(θ)]−1s(θ)

and s(θ) is a sum of a lot of (weakly dependent?) terms.
▶ Improve Cov(θ̃) estimates by using

[J(θ̃)]−1V̂ar[s(θ̃)][J(θ̃)]−1 instead of [J(θ̃)]−1.



Open question: Is the MPLE asymptotically normal?
▶ g(y) = (edges in y , triangles in y)⊤

▶ Networks generated from θ0 = (4 − log n, −0.2)⊤

▶ Dashed, solid ellipses based on J−1 alone, J−1(Var s)J−1
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Open question: Is the MPLE asymptotically normal?
▶ g(y) = (edges in y , triangles in y)⊤

▶ Networks generated from θ0 = (4 − log n, −0.2)⊤

▶ Depicted: Ellipse coverage proportions as function of χ2
2 cutoff

▶ “Inverse Hessian” is J−1. “Godambe” is J−1(Var s)J−1.
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What is a consistent estimator for an ERGM?

Pθ(Y = y) = exp{θ⊤g(y)}
κ(θ)

Take g(y) = #edges in y to get the simplest of all ERGMs
▶ Proposed by Gilbert (1959) and Erdős & Rényi (1959)
▶ Usually called “the Erdős-Rényi model”

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics.

www.jstor.org
®

Figure 1: Gilbert 1959



What is a consistent estimator for an ERGM?

For the Erdős-Rényi-Gilbert model:

▶ Each (undirected) edge occurs independently with probability

p ≡ logit−1(θ).

▶ In our n-node network, each node’s degree is Bin(n − 1, p).
▶ However, real networks don’t often have expected degree ∝ n.

Therefore, although trivially√(
n
2

)
(θ̂n − θ) d→ N

(
0,

(1 + eθ)2

eθ

)
,

standard notions of consistency might not be an appropriate asymptotic
framework.



What is a consistent estimator for an ERGM?

Krivitsky et al (2011) argue as follows:

▶ Expected degree is an essentially local property and should not
change as n increases

▶ Replacing θ by θ − log n implies p ∼ exp{θ}/n.
▶ This in turn means mean degree d→ Poisson(eθ).

Furthermore, replacing θ by θ − log n can be accomplished by an offset
added to the edges coefficient; we don’t need to let θ depend on n.

We may prove that
√

n(θ̂n − θ) d→ N(0, 2e−θ)

where θ̂n = MLE under the Erdős-Rényi model with edges offset − log n.



Open question: Do meaningful dyad-dependent asymptotics
follow from the edges offset alone?

▶ g(y) = (edges in y , triangles in y)⊤

▶ Shown: Summary of 200 networks with θ = (4 − log n, −0.2)⊤
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Open question: Do meaningful dyad-dependent asymptotics
follow from the edges offset alone?

▶ g(y) = (edges in y , triangles in y)⊤

▶ Shown: Summary of 200 networks with θ = (4 − log n, −0.2)⊤
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Thank you

References:
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▶ Krivitsky, Handcock, and Morris (2011, CSDA), Adjusting for

Network Size and Composition Effects in Exponential-Family Random
Graph Models

▶ Schmid (2021, Ph.D. dissertation), Theory and Applications of
Estimation Methods for Exponential-Family Random Graph Models

▶ Shailzi and Rinaldo (2013, AOS), Consistency Under Sampling of
Exponential Random Graph Models



What is a consistent MLE for an ERGM?

Shalizi and Rinaldo (2013, AOS) consider the question of
“consistency under sampling”:

▶ Given an ERGM for a large network, is the induced model for a
sub-network the same?

▶ In other words, do we have probabilistic consistency?

In general, no. In other words, some ERGMs lack projectivity.

Lack of projectivity means

▶ For fixed θ, there is a problem with
√

n(θ̂n − θ) d→ N(0, Σ).

▶ Parameter estimates for a particular network should only be
interpreted in the context of that network.



A simple characterization of projective models

Shalizi and Rinaldo (2013, AOS) show that

▶ “Dyadic independence models have separable and independent
increments to the statistics, and the resulting family is projective.”

▶ “However, specifications where the sufficient statistics count larger
motifs cannot have separable increments, and projectibility does not
hold. Such an ERGM may provide a good description of a given
social network on a certain set of nodes, but it cannot be projected
to give predictions on any larger or more global graph from which
that one was drawn.”



MCMC-based approximation: One approach

MCMC-based approximation of the loglikelihood may be based on

κ(θ)
κ(θ0) = Eθ0

[
exp{(θ − θ0)⊤g(Y )}

]
by selecting Y1, . . . , Ym from a MC with limiting distribution Pθ0 .

That is, we approximate ℓ(θ) − ℓ(θ0) by

(θ − θ0)⊤g(yobs) − log 1
m

m∑
i=1

exp{(θ − θ0)⊤g(Yi)}



How well does MCMC-based approximation work?
▶ Assume Erdős-Rényi with n = 40.
▶ Of 780 possible edges, we observe 272, so θ̂ = −0.625
▶ Approximations use idealized samples of size 10k , k ∈ {3, 5, 10, 15}.
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