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ERGM: A broad class of models for networks
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What is an exponential-family random graph model (ERGM)?

exp{f' g
Po(Y = y) P{e(e)(}’)}
where

P y is a realization of a network on a given set of nodes
» g(y) is a p-dimensional vector of statistics on y



Fitting an ERGM via maximum likeilhood can be easy. ..

form <- faux.mesa.high ~ edges + nodematch("Grade", diff=TRUE)
summary (ergm(form) ) $coef

## Estimate Std. Error MCMC % z value Pr(>lzl)
## edges -6.034045 0.1583030 0 -38.117059 0.000000e+00
## nodematch.Grade.7 2.847142 0.1973419 0 14.427454 3.476800e-47
## nodematch.Grade.8 2.914487 0.2381209 0 12.239528 1.911406e-34
## nodematch.Grade.9 2.438521 0.2640671 0 9.234476 2.595528e-20
## nodematch.Grade.10 2.557946 0.3736407 0 6.846005 7.594061e-12
## nodematch.Grade.11 3.310430 0.2962168 0 11.175702 5.362482e-29
## nodematch.Grade.12 3.731460 0.4565010 0 8.174045 2.982181e-16



.or fitting an ERGM via maximum likelihood can be hard

Recall that {GT )
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» Suppose y is an undirected binary network on n nodes
» Naive evaluation of k() involves summing 2(2) terms

MCMC-based approximation of the loglikelihood may be based on

e = B [e{(0 ~ 60) (Y]]

by selecting Y1,..., Yy, from a MC with limiting distribution Pg,.



MPLE: Another way to get an estimate of 6

» MPLE = maximum pseudo-likelihood estimation

From

exp{0Tg(y
P@(Y = y) = {K/(e)()}’
we obtain
P ( | —y-c-)
| U :gT +\ _ -
where

> YUC is all of Y except Yj; (similarly for yUC)
> yU is y;; along with y; =1

> y; is yj along with y;; =0



MPLE: Another way to get an estimate of 6

> With
logit Py(Yy =11 Y5 = y§) =07 [gv) — e(yy)]

write £;;(f) as the conditional log-likelihood of Yj; | Y.
» Then the pseudo-likelihood is

pU(0) = Y 15(0)

and the MPLE is = arg maxy pl(6).
» Dyadic Independence ERGM: If g(y) is defined so that the Yj;
are mutually independent, then p¢(6) = ¢(#) and MLE=MPLE.
> An MPLE is easy to calculate via logistic regression.



MPLE via logistic regression: Standard errors are wrong
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form <- faux.mesa.high ~ edges + nodematch("Grade", diff=TRUE) + triangle
summary (ergm(form, estimate = "MPLE"))$coef

## Estimate Std. Error MCMC % z value Pr(>lzl)
## edges -6.151667 0.1603438 0 -38.365483 0.000000e+00
## nodematch.Grade.7 1.940629 0.2230463 0 8.700564 3.302376e-18
## nodematch.Grade.8 1.900893 0.2868344 0 6.627144 3.422427e-11
## nodematch.Grade.9 2.188814 0.2796815 0 7.826094 5.032614e-15
## nodematch.Grade.10 2.515165 0.3777922 0 6.657535 2.784575e-11
## nodematch.Grade.11 2.710927 0.3263737 0 8.306205 9.881162e-17
## nodematch.Grade.12 3.225686 0.4994717 0 6.458195 1.059592e-10
## triangle 2.174185 0.1162932 0 18.695718 5.364334e-78



Why use MLE in the first place?

» The MLE is the method of moments estimator:

E;[8(Y)] = g(y*™)

» Unlike MPLE, MLE satisfies the likelihood principle:

All information in the data relevant to the model parameters
is contained in the likelihood function.

» Ideally, the MLE is also consistent, asymptotically normal.

» In practice, the ease of obtaining an MPLE can belie serious
problems with the choice of g(y).



Correcting MPLE for model misspecification

> Write
s(0) = Vpl(0)

and
J(8) = —V?pL(0) = —Vs(6).

P The usual Taylor expansion gives
(6—6) ~ [J(0)] *s(0)

and s(0) is a sum of a lot of (weakly dependent?) terms.

» Improve Cov(f) estimates by using

(O] WVar[s(D][J(@)]  instead of  [J(@)] .



Open question: Is the MPLE asymptotically normal?

> g(y) = (edges in y, triangles in y) T
» Networks generated from 6 = (4 — log n, —0.2) "
» Dashed, solid ellipses based on J~! alone, J=*(Var s)J~!
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From Christian Schmid's dissertation (2021).



Open question: Is the MPLE asymptotically normal?

> g(y) = (edges in y, triangles in y) T

> Networks generated from 6y = (4 — logn, —0.2) "

» Depicted: Ellipse coverage proportions as function of x3 cutoff
> “Inverse Hessian” is J~1. “Godambe” is J~1(Var s)J~ 1.
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What is a consistent estimator for an ERGM?
_ exp{0g(y)}
r(0)
Take g(y) = #tedges in y to get the simplest of all ERGMs

» Proposed by Gilbert (1959) and Erd8s & Rényi (1959)
» Usually called “the Erdos-Rényi model”

Po(Y =)

RANDOM GRAPHS
By E. N. GILBERT

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

1. Introduction. Let N points, numbered 1, 2, ---, N, be given. There are
N(N — 1)/2 lines which can be drawn joining pairs of these points. Choosing a
subset of these lines to draw, one obtains a graph; there are 27"/ possible
graphs in total. Pick one of these graphs by the following random process. For
all pairs of points make random choices, independent of each other, whether or
not to join the points of the pair by a line. Let the common probability of join-
ing be p. Equivalently, one may erase lines, with common probability ¢ = 1 — p
from the complete graph.

Tn the random oranh <o constriicted one savs that noint 2 18 connected to noint 1



What is a consistent estimator for an ERGM?

For the Erdés-Rényi-Gilbert model:
» Each (undirected) edge occurs independently with probability
p = logit™1(6).

» In our n-node network, each node’s degree is Bin(n — 1, p).
» However, real networks don't often have expected degree o n.

Therefore, although trivially

<’2’>(én Y <o, (12;9)2) :

standard notions of consistency might not be an appropriate asymptotic
framework.



What is a consistent estimator for an ERGM?

Krivitsky et al (2011) argue as follows:

P> Expected degree is an essentially local property and should not
change as n increases

» Replacing 0 by 6 — log n implies p ~ exp{6}/n.

» This in turn means mean degree LN Poisson(e?).

Furthermore, replacing 6 by 8 — log n can be accomplished by an offset
added to the edges coefficient; we don’t need to let 6 depend on n.

We may prove that

(b, —0) % N(0,2e7%)

where 8, = MLE under the Erd6s-Rényi model with edges offset — log n.



Open question: Do meaningful dyad-dependent asymptotics
follow from the edges offset alone?

» g(y) = (edges in y, triangles in y) "
» Shown: Summary of 200 networks with § = (4 — log n, —0.2) T

Degree Distribution
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From Christian Schmid's dissertation (2021).



Open question: Do meaningful dyad-dependent asymptotics
follow from the edges offset alone?

» g(y) = (edges in y, triangles in y) "
» Shown: Summary of 200 networks with § = (4 — log n, —0.2) T

Distribution of the Number of Triangles a Node is Part of
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Thank you
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What is a consistent MLE for an ERGM?

Shalizi and Rinaldo (2013, AOS) consider the question of
“consistency under sampling”:

» Given an ERGM for a large network, is the induced model for a
sub-network the same?
» In other words, do we have probabilistic consistency?

In general, no. In other words, some ERGMs lack projectivity.

Lack of projectivity means
» For fixed 6, there is a problem with
Vn(f, —0) % N(O,5).

» Parameter estimates for a particular network should only be
interpreted in the context of that network.



A simple characterization of projective models

Shalizi and Rinaldo (2013, AOS) show that

» “Dyadic independence models have separable and independent
increments to the statistics, and the resulting family is projective.”

» “However, specifications where the sufficient statistics count larger
motifs cannot have separable increments, and projectibility does not
hold. Such an ERGM may provide a good description of a given
social network on a certain set of nodes, but it cannot be projected
to give predictions on any larger or more global graph from which
that one was drawn.”



MCMC-based approximation: One approach

MCMC-based approximation of the loglikelihood may be based on

K(6) _ T
w0y~ Eo [0 (6 = 00)Tg(v))]
by selecting Y1,..., Yy, from a MC with limiting distribution Pg,.

That is, we approximate ¢(0) — ¢(6p) by

(6 00) T &ly™) ~ log = " exp{(6 — o) &(¥)



How well does MCMC-based approximation work?

» Assume Erd6s-Rényi with n = 40. .
» Of 780 possible edges, we observe 272, so § = —0.625
» Approximations use idealized samples of size 10%, k € {3,5,10, 15}.
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From Hummel et al (2012).



