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Autocorrelation: Xt is called a process with long-range dependence
if there exists a real number δ ∈ (0, 1) and a constant cρ such that:
limτ→∞

ρX,τ
cρτ−δ

= 1 where ρX,τ is the autocorrelation sequence of Xt
at time lag τ .

Spectral density: Xt is called a process with long-range dependence
if there exists a real number δ ∈ (0, 1) and a constant cS such that:
limf→0

SX(f )

cS|f |−δ
= 1 where SX (f ) is the spectral density of Xt at fre-

quency f .

1. Long-range dependence (LRD) [1, 2]

• Small magnitude earthquakes (M ∼ 0− 2).
• Reduced amplitudes at frequencies greater than 10 Hz.
• Earthquake source located close to the plate interface.
•Grouped into families: All LFEs from a given family originate

from the same small patch.
•Dozens of LFEs within a few hours or days, followed by weeks or

months of quiet.

2. Low-frequency earthquakes (LFEs)

• LRD: Slow rate of decay of the statistical dependence between
two points with increasing time interval between the points.
• Evidence of LRD in LFE catalogs.
• Earthquake occurrence times→ Discrete time series = Number of

earthquakes per unit of time.
•Graphical methods to estimate either the Hurst parameter H or

the fractional differencing parameter d.

5. Summary

Aggregated time series: X(m) (k) = 1
m

∑km
i=(k−1)m+1Xi

First absolute moment: AM (m) = m
N

∑N
m
k=1

∣∣∣X(m) (k)−X
∣∣∣

Sample variance: V̂ arX(m) = m
N

∑N
m
k=1

(
X(m) (k)−X

)2
Average V R(m) over k of the sample variance of the residuals of the
linear regression of the partial sums of the time series.
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, k = 0, · · · , K − 1 with:
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Periodogram: I (f ) = 1
2πN

∣∣∣∑N
t=1Xte

itf
∣∣∣2 where f is the frequency.

Asymptotic behavior of the graphical estimators

Estimator Asymptotic behavior For
AM (m) mH−1 Large m
V̂ arX(m) m2d−1 Large N/m and m

VR(m) m2d+1 Large m

R/S
(n)
k nd+

1
2 Large n

I (f ) |f |−2d ν → 0

3. Estimators [3]

Distribution of the value of H or d for all the time series in each LFE
catalog for the five methods of estimation. For better comparison

between the distributions of H and d, I plotted H − 0.5 instead of H .
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Figure 1: 1120 time series from the LFE catalog of Frank et al. (2014)
in Mexico.
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Figure 2: 88 time series from the LFE catalog of Shelly (2017) in the
San Andreas Fault.
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