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Metastatic Renal Cell Carcinoma

Finding biomarkers predictive of clinical benefit
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Prognostic Biomarkers

Indicators of outcome, regardless of therapy
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Predictive Biomarkers

Treatment effect modifiers
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Predictive Biomarker Applications

Predictive biomarkers drive personalized medicine

 Diagnostic assay development: Who benefits most from a therapy?
 Targeted drug discovery: What is the biological mechanism of a therapy?

* Refined clinical trials: Establish a subset of the patient population for which
therapy is more efficacious?



Discovering Predictive Biomarkers



Uncovering Predictive Biomarkers

A variable selection problem

 Easy when there are few biomarkers to consider:
* Linear models with treatment-biomarker interaction terms
 Conditional average treatment effect (CATE) estimation

 Harder when there are a large number of biomarkers: Penalized versions of
the above methods are used.

 Bottom line: Discovery of predictive biomarkers is the byproduct of another
iInference procedure.



Example: Modified Covariates Approach

A method for modeling treatment-biomarker interactions directly

 Tian et al (2014) demonstrated that the treatment-biomarker interactions can
be modeled directly through a minor transformation of the outcome.

* |n high-dimensions, the interaction coefficients of a linear model are
estimated using penalized regression methods, like the LASSO.

 An “augmented” version of the methodology was developed, accounting for
prognostic effects. Equivalent to LASSO regression with treatment-biomarker

Interactions.



Issues with Penalized Regression Methods

Unreliable biomarker selection

Strong assumptions: sparsity and correlation structure.
Violations produce to high false positive rates, leading to:
 Resources wasted on follow-up experiments and trials

* Decreased signal to noise ratio in diagnostic assays

We need to consider alternative problem formulations.
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uniCATE

Assumption-lean estimator of biomarker predictiveness

Estimating this parameter for a centered biomarker is easy in a honparametric model!

— " (predicted outcome difference™)(biomarker),

%Z; (biomarker)?

This estimator is asymptotically linear. The only assumption in an RCT: the
biomarker has non-zero variance.



uniCATE in Action

uniCATE ranks biomarkers based on predictiveness
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Simulation Studies
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UuniCATE Controls False Positive Rates

Mean of 200 Replicates

Classification of Non-Sparse, Moderate-Dimensional, and Uncorrelated Predictive Biomarkers
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uniCATE Still Controls False Positive Rates

Mean of 200 Replicates

Classification of Sparse, High-Dimensional, and Correlated Predictive Biomarkers
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Application to IMmotion 150/151



Application to IMmotion 150

uniCATE’s results align with recent findings in nivolumab

1. Only patients with tumor RNA-seq data in the sunitinib (h=71) and
atezolizumab + bevacizumab (n=77) arms were considered.

2. Selected the 500 most variable, log-transformed genes as biomarkers.

3. Objective response was used as the response variable.

92 genes were identified as predictive using a 5% FDR cutoff. They are
associated with immune responses, including those mediated by B cells
and lymphocytes.



Validation on IMmotion 151

uniCATE identifies meaningful predictive biomarkers

A Modified Covariates Selection
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Conclusion

 UniCATE is an assumption-lean inference procedure that controls the rate of
false positive predictive biomarkers in high dimensional RCTs.

 Check out uniCATE’s implementation in the uniCATE R package, available at
github.com/insightsengineering/uniCATE



http://github.com/insightsengineering/uniCATE

Questions?

pboileau.ca — philippe_boileau@berkeley.edu




