Introduction	Data Description and Preparation	Methodology	Results	Conclusion	Limitations and Future Work	References

STORM-BASED ESTIMATION OF DESIGN GROUND SNOW LOAD FOR SOLAR PANELS

Kenneth Pomeyie Dr. Brennan Bean

Department of Mathematics and Statistics Utah State University

May 31, 2022

Data Description and Preparation	Methodology		Limitations and Future Work	References

Outline

2 Data Description and Preparation

3 Methodology

5 Conclusion

6 Limitations and Future Work

Introduction	Data Description and Preparation	Methodology	Results	Conclusion	Limitations and Future Work	References
● 00						

Design Snow Load

Snow water equivalent **(SWE)** has its primary application in the development of load standards for building design.

Design snow load is the weight of snow with a mean recurrence interval (MRI) of 50 years.

Numerous studies have been done to determine design snow load at state and national level:

- Montana: Theisen et al. [2004]
- Utah: Bean et al. [2018]
- Colorado: DeBock et al. [2017], Liel et al. [2017]
- Conterminous United States: Bean et al. [2021]

Introduction	Data Description and Preparation	Methodology	Results	Conclusion	Limitations and Future Work	References
000						

Design Snow Load

Like with roof of buildings, solar panels must be designed to support the maximum weight of snow.

A stand-lone solar panel mounted at a steep angle promotes the shedding of snow.

This shedding phenomenon leads to a critical difference compared to traditional roofing systems that assume that accumulated snow persist for longer periods.

Introduction ○○●	Data Description and Preparation	Methodology	Results	Limitations and Future Work	References
Design	Snow Load				

Issue: The current design loads in **ASCE 7-22** fail to consider the snow-shedding properties of solar panels. These design loads model the peak, season-long accumulation of snow.

Fix: This paper addresses the issue by requiring a change in the temporal scale of snow measurements considered.

- We evaluate short-term rather than season-long accumulation of snow.
- We mimic the shedding phenomena of the snow accumulation process by defining and extracting storm-level accumulations.

Introduction	Data Description and Preparation	Methodology	Results	Conclusion	Limitations and Future Work	References
	•00					

Data Description

Data set: Daily snow depth (SNWD) and SWE measurements used in this analysis were collected from 6,245 weather stations across USA.

- Source National Oceanic and Atmospheric Administration's (NOAA) Global Historical Climatology Network (GHCND).
- Period 1858 to 2021 (164 snow years).
- Stations Filters: At least 50% measurement coverage from station inception and 10 or more snow years.
- Weather stations:
 - SNOTEL 428 stations
 - COOP 5,566 stations
 - FOS 251 stations

Introduction	Data Description and Preparation	Methodology	Results	Conclusion	Limitations and Future Work	References
	000					

Missing Data in Snow Measurements

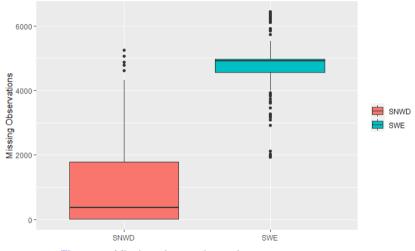


Figure 1: Missing observations of snow measurements

Pomeyie - May 31, 2022

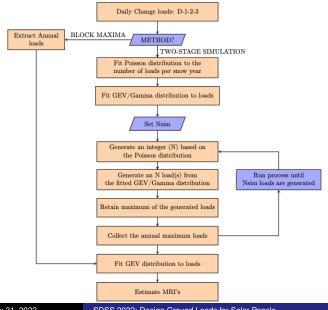
Introduction	Data Description and Preparation $\circ \circ \bullet$	Methodology	Results	Limitations and Future Work	References
Data In	nputation				

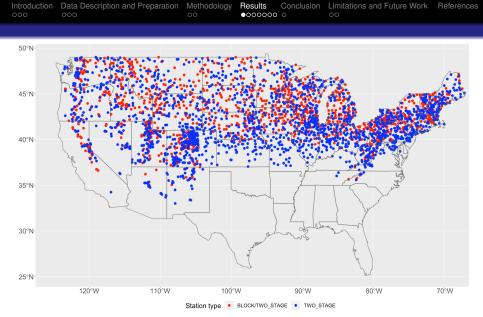
SNWD Imputation: Using information of stations within a 100,000 meter radius and an elevation difference of 100 meters.

SWE Imputation: Missing daily SWE measurements are estimated using a storm-level random forests density model.

- The model is trained on all available stations to ensure consistency with observed snow densities in the USA.
- Predictor variables include climate and non-climate variables.

To mimic the shedding phenomenon of solar panels let's assume daily sequential changes in SWE:


$$\{\Delta SWE_t\}_{t=2}^n = (SWE_t - SWE_{t-1}) \tag{1}$$


Single-day (D1) Change method: The single-day method retains positive observations from Equation 1.

Multi-day Change method: Addresses changes in assumption (like no sunlight exposure or sticky snow) about the rate at which snow is shed on solar panel.

Key to our methodology: Using snowfall days to separate legitimate snow accumulations from random perturbations.

Figure 2: Final weather stations for MRI estimation

Pomeyie - May 31, 2022

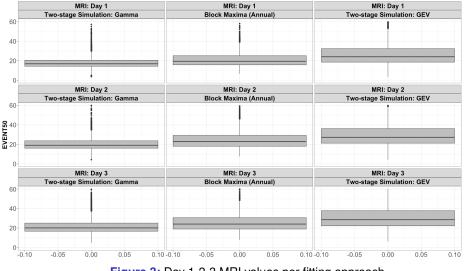
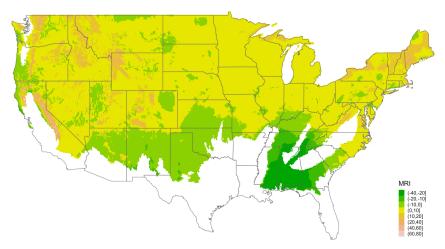


Figure 3: Day 1-2-3 MRI values per fitting approach


Pomeyie - May 31, 2022

Introduction	Data Description and Preparation	Methodology	Results	Conclusion	Limitations and Future Work	References
			000000			

Spatially Continuous Prediction Map

- Regional generalized additive models (RGAMs) integrates generalized additive models and spatial partitioning into a single framework.
- The framework accomplished by **remap** r package [Wagstaff, 2021] allows for mapping between measurement locations.
- Variables used for mapping include:
 - Elevation
 - Mean temperature of the coldest month (30-year average)
 - Winter precipitation (30-year average)
 - Latitude and Longitude

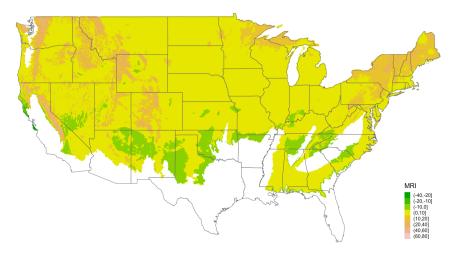

Introduction	Data Description and Preparation	Methodology	Results	Conclusion	Limitations and Future Work	References
			0000000			

Figure 4: Difference plot between GEV two-stage simulation and block maxima approach for the Day-1 method. Values are measured in pounds per square foot(psf).

Pomeyie - May 31, 2022

Introduction	Data Description and Preparation	Methodology	Results	Conclusion	Limitations and Future Work	References
			0000000			

Figure 5: Difference plot between GEV two-stage simulation and gamma two-stage simulation approach for the Day-1 method. Values are measured in pounds per square foot(psf).

Pomeyie - May 31, 2022

Introduction	Data Description and Preparation	Methodology	Results	Conclusion	Limitations and Future Work	References
			0000000			

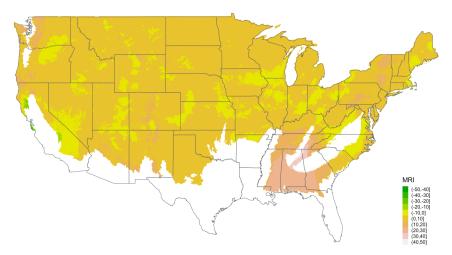


Figure 6: Difference plot between block maxima and gamma two-stage simulation approach for the Day-1 method. Values are measured in pounds per square foot(psf).

Pomeyie - May 31, 2022

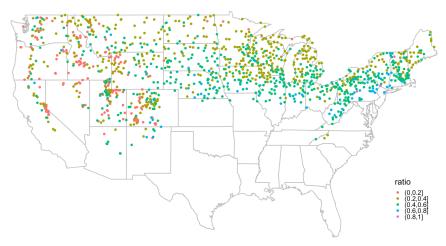


Figure 7: MRI ratio plot of Day-1 block maxima approach to peak, season-long accumulation block maxima approach. Stations have a least 30 observations.

Introduction	Data Description and Preparation	Methodology	Results 0000000	Limitations and Future Work	References
Conclu	ision				

- The GEV two-stage simulation approach produces larger MRI values on an average than the Block Maxima approach(traditional standard).
- The difference in MRI values between the various approaches are predominantly within a \pm **10 psf** across the USA.
- Comparing traditional roof systems MRIs to solar-specific MRIs, MRI ratios turn out to be lower in mountainous stations.

Introduction	Data Description and Preparation	Methodology	Results	Conclusion	Limitations and Future Work	References
					•0	

Limitations and Future Work

- Long computational time for Day 2 and 3 data extraction.
- Explore a Bayesian framework (MCMC Metropolis-Hastings algorithm) to synthetically generate daily snow loads and assess with the two-stage simulation approach.
- Determine Solar-specific design snow load based on uniform risk (safety index) rather than on uniform hazard (constant return period).

Data Description and Preparation	Methodology		Limitations and Future Work	References

References I

Brennan Bean, Marc Maguire, and Yan Sun. The utah snow load study. 2018.

- Brennan Bean, Marc Maguire, Yan Sun, Jadon Wagstaff, Salam Adil Al-Rubaye, Jesse Wheeler, Scout Jarman, and Miranda Rogers. The 2020 national snow load study. Technical Report 276, Utah State University Department of Mathematics and Statistics, Logan, UT, Feb 2021.
- D Jared DeBock, Abbie B Liel, James R Harris, Bruce R Ellingwood, and Jeannette M Torrents. Reliability-based design snow loads. i: Site-specific probability models for ground snow loads. *Journal of Structural Engineering*, 143(7):04017046, 2017.
- Abbie B Liel, D Jared DeBock, James R Harris, Bruce R Ellingwood, and Jeannette M Torrents. Reliability-based design snow loads. ii: Reliability assessment and mapping procedures. *Journal of Structural Engineering*, 143(7):04017047, 2017.
- GP Theisen, MJ Keller, JE Stephens, FF Videon, and JP Schilke. Snow loads for structural design in montana. *Bozeman, Montana: Civil Engineering Dept., Montana State Univ*, 2004.
- Jadon Wagstaff. Regionalized models with spatially continuous predictions at the borders. Ms thesis, Utah State University, 2021. URL

https://digitalcommons.usu.edu/etd/8065/. Document No. 8065.