A Brief Overview of Explainable and Interpretable Al

William Franz Lamberti 1

University of Virginia

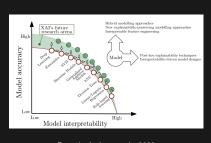
SDSS 2022

¹MS Statistical Science PhD Computational Sciences and Informatics

Outline

Introduction

Interpretability and Explainability

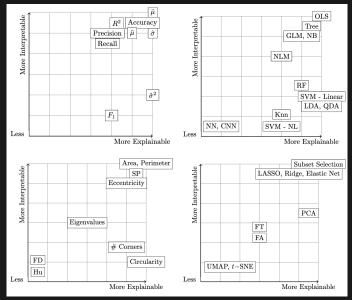

Case Study: White Blood Cells (WBC)

Conclusion

Acknowledgements

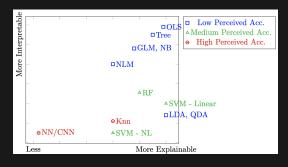
Introduction

- Explainable AI (XAI) includes methodologies, statistics, and/or variables that provide insight into how models make predictions
- XAI is a newer idea that depends on interpretability and explainability
- Different definitions, but similar concepts
- Mostly confined to models
- EU and the "Right to Explainability"


Barredo Arrieta et al., 2020

Explainability and Interpretability

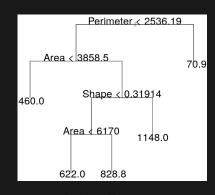
- Interpretability = the characteristic of an element to have concrete physical meaning
- Explainability = the property of an element that allows its mechanisms to be explicitly described, understood, and studied


	Model	Variable	Example	
Inter.	For every unit increase	X measures	Standard	
	in X, we expect Y to	the area of	deviation	
	increase by Δ	a shape	(unit)	
Expl.	The model tends to	X measures	Variance	
	correctly classify class γ	how circular	(unit ²)	
	with low values as	the shape is		
	shown by this plot			

Explainability and Interpretability: Overview

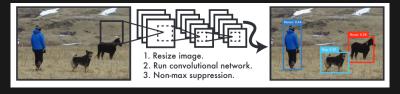
Explainability and Interpretability: Perceived Accuracy

- ► More Inter. = less perceived Acc.
- Less Inter. = More perceived Acc.
- Flawed perspective
- Better perspective
 - Understand the problem
 - Occam's Razor



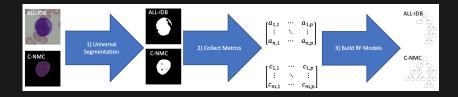
Lamberti, In Press, 2022

"Wherever possible, it makes sense to try the simpler models as well, and then make a choice based on the performance/complexity tradeoff." - ISLR, 2nd Ed.


Explainability and Interpretability: Trees

- Pros
 - Easy to visualize
 - Nontechnical audiences easily follow
- Cons
 - Can easily overfit
- ► High Inter. and Expl.

Lamberti, In Press, 2022

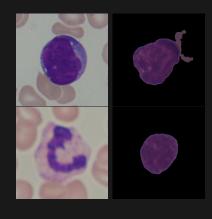

Explainability and Interpretability: CNNs

Redmon, Joseph et al., 2016

- ▶ Pros
 - Very powerful
 - Learn features needed for problem
 - Perform segmentation and classification
- ▶ Cons
 - Shift specifying features to specifying architecture
 - Costly
 - Difficult to interpret and explain
- ► Low Inter. and Expl.

WBC: Introduction

- ► Build model that outperforms state of the art in classifying WBCs as malignant (ALL) or benign (H)
- Use interpretable and explainable metrics
- Use universal segmentation algorithm
- Use as few variables as possible


Case Study: Introduction

- Classification of white blood cells (WBCs) as malignant or benign is an important task
- Acute Lumpocytic Leukemia (ALL) is a type of malignant cancer
 - Prone populations
 - Children
 - Elderly
 - ALL Characteristics
 - ► Less regular in shape
 - ► Holes in the cytoplasm
 - ► Circular particles in nuclei
- State of the art approaches use some form of a Convolutional Neural Network (CNN)

Case Study: Data

- ► ALL-IDB2 Classes
 - ► ALL: 130
 - ► H: 130
- ► C-NMC Classes
 - ► ALL: 7,272
 - ► H: 3,389
- Universal segmentation would be very useful

Case Study: Segmentation Results

Case Study: Modeling Results

Data	Source	# of Features	Model	Exp.	Inter.	Туре	$Acc./F_1$
ALL-IDB2	Singhal and Singh (2014)	256	SVM	Low	Low	AI	89.72%
	Singhal and Singh (2016)	4096	Knn	Low	Low	AI	93.84%
	Bhattacharjee and Saini (2015)	8	Knn	Low	Low	Al	95.24%
	Sahlol, Abdeldaim, et al. (2019)	45	Knn	Low	Low	Al	95.67%
	Sahlol, Kollmannsberger, et al. (2020)	1087	CNN& SVM	Low	Low	Al	96.11%
	William Franz Lamberti (2021)	24	RF	High	Medium	XAI	100.00%
C-NMC -	Kulhalli et al. Kulhalli et al. (2019)	25 × 10 ⁶	CNN	Low	Low	Al	85.7
	Ding et al. Ding et al. (2019)	87×10^{6}	CNN	Low	Low	Al	86.7
	Marzahl et al. Marzahl et al. (2019)	11 × 10 ⁶	CNN	Low	Low	Al	86.9
	Sahlol et al. Sahlol, Kollmannsberger, et al. (2020)	1,115	CNN&SVM	Low	Low	AI	87.9
	William Franz Lamberti (2021)	24	RF	High	Medium	XAI	90.1

Conclusion

- ▶ Inter. and Expl.
 - Definitions used to describe various aspects of modeling
 - ► Future Work: Formalized index or metric
- Case Study
 - ► RF outperforms all other approaches
 - ► Rethink our conceptions about model performance
- An Overview of Explainable and Interpretable Artificial Intelligence, Lamberti, W. F. In "Al Assurance: Towards Valid, Explainable, Fair, and Ethical Al" (To be Published Fall 2022)

Acknowledgements

- ► GMU, Office of the Provost
- ► GMU, Office of Research Computing
- UVA, Center of Public Heath Genomics
- ► SDSS, Early Career Award

Any Questions?