Deep Neural Network Classifier for Multi-Dimensional Functional Data

Shuoyang Wang

Joint work with Guanqun Cao (AU) & Zuofeng Shang (NJIT)

2022 Symposium on Data Science and Statistics Jun 8th, 2022

Partially funded by NSF award DMS-1736470

Motivating example: speech data

 $aa \iff dark$ $ao \iff water$

Motivating example: Alzheimer disease

EMCI : early mild cognitive impairment AD : Alzheimer disease

Shuoyang Wang (Yale University)

Functional data classification (one-dimensional)

• k-nearest neighbor classifiers [Biau et al., 2005, Biau et al., 2010].

Functional data classification (one-dimensional)

- k-nearest neighbor classifiers [Biau et al., 2005, Biau et al., 2010].
- logistic regression [Araki et al., 2009].

Functional data classification (one-dimensional)

- k-nearest neighbor classifiers [Biau et al., 2005, Biau et al., 2010].
- logistic regression [Araki et al., 2009].
- Functional discriminant analysis [Delaigle and Hall, 2012].

Functional data classification (one-dimensional)

- k-nearest neighbor classifiers [Biau et al., 2005, Biau et al., 2010].
- logistic regression [Araki et al., 2009].
- Functional discriminant analysis [Delaigle and Hall, 2012].
- Bayesian classifier [Dai et al., 2017].

Which classifier(s) can achieve optimality?

Framework for functional data classification

• Class label
$$Y = \{1, -1\}$$

•
$$X(\mathbf{s}) = \sum_{j=1}^{\infty} \xi_j \psi_j(\mathbf{s}) \iff (\xi_1, \xi_2, \ldots)^{\mathsf{T}}$$

• Density for functional observations $h = (h_1, h_{-1}) \in \mathcal{H}$

- Domain for *h* has infinite dimension
- Likelihood ratio h_1/h_{-1} has composition structures of q layers
- The *u*-th composition layer:
 - β_u-Hölder functions
 - Intrinsic dimension bounded by $c_u < \infty$

Noise condition with α

$$P\left(\left|\frac{h_1-h_{-1}}{h_1+h_{-1}}\right| \le x\right) \le Cx^{\alpha}, \quad \forall x > 0.$$
(1)

Statistical optimality for binary classification

Misclassification risk for \widehat{G}

$$\mathsf{R}_h(\widehat{\mathsf{G}}_n) := \mathbb{E}_h[\mathbb{I}\{\widehat{\mathsf{G}}_n(X) \neq Y\} | \{X_i, Y_i\}_{i=1}^n]$$

Excess misclassification risk (EMR)

$$\mathcal{E}_h(\widehat{G}) := \mathbb{E}[R_h(\widehat{G}_n) - R_h(G^*)], \ G^*$$
 is the Bayesian classifier

Minimax excess misclassification risk (MEMR)

$$\max_{h \in \mathcal{H}} \mathcal{E}_h(\widehat{\mathbf{G}}) \asymp \inf_{\widehat{\mathbf{G}}} \max_{h \in \mathcal{H}} \mathcal{E}_h(\widehat{\mathbf{G}})$$

G is statistically optimal!

Optimality for Functional Deep Neural Network (FDNN) Classifier

MEMR lower bound

$$\inf_{\widehat{G}} \sup_{h \in \mathcal{H}} E\left[R_h(\widehat{G}) - R_h(G^*)\right] \gtrsim \left(\frac{1}{n}\right)^{S_0}$$

EMR for FDNN classifier

$$\sup_{h\in\mathcal{H}} E\left[R_h(\widehat{G}^{FDNN}) - R_h(G^*)\right] \lesssim \left(\frac{\log^3 n}{n}\right)^{S_0}$$

$$S_0 = \min_{u=0,\ldots,q} \frac{\beta_u^*(\alpha+1)}{\beta_u^*(\alpha+2)+c_u}, \ \beta_u^* = \beta_u \prod_{w=u+1}^q \beta_w \wedge 1.$$

 $c_u \uparrow \iff$ easier to classify (Bayesian) \iff slower convergence $c_u \downarrow \iff$ harder to classify (Bayesian) \iff faster convergence

•

,

Data driven architecture

Hyperparameters for DNN

- Number of inputs: $(n\log^{-3}n)^{S_0/\rho} \lesssim J \lesssim (n\log^{-3}n)^{S_1};$
- Depth: $L \simeq \log n$;
- Width: $\max_{1 \le \ell \le L} p_{\ell} \asymp (n \log^{-3} n)^{S_1}$;
- Maximal weight: $B \simeq (n \log^{-3} n)^{S_2}$,

$$S_1 = \max_{0 \leq u \leq q} \frac{c_u}{\beta_u^*(\alpha+2) + c_u}, S_2 = \min_{0 \leq u \leq q} \frac{1}{\beta_u^*(\alpha+2) + c_u}, \rho > 0.$$

Deep neural network structures (J = 4)

Functional deep neural networks (FDNN) classifier

Deep neural networks

Deep neural networks with ReLU active function and hinge loss

Functional deep neural networks (FDNN) classifier

Deep neural networks

Deep neural networks with ReLU active function and hinge loss

Projection scores as inputs

- Use the first J projection scores $\{\xi_i^{(j)}\}_{i=1}^J$ as inputs of DNN
- Classification rule: $\widehat{G}^{FDNN}(Z) = \mathbb{I}\left(\widehat{f}_{\phi}(\boldsymbol{z}) < 0\right)$

Functional deep neural networks (FDNN) classifier

Deep neural networks

Deep neural networks with ReLU active function and hinge loss

Projection scores as inputs

• Use the first J projection scores $\{\xi_i^{(j)}\}_{i=1}^J$ as inputs of DNN

• Classification rule:
$$\widehat{G}^{FDNN}(Z) = \mathbb{I}\left(\widehat{f}_{\phi}(\boldsymbol{z}) < 0\right)$$

Choice of ingredients

- Data driven network structure
- Flexible choice of basis functions

Network hyperparameter selection

Data-splitting method

- Step 1. Randomly divide the whole sample $\left(\{\xi_i^{(j)}\}_{j=1}^J, Y_i\right)$'s into two subsets indexed by \mathcal{I}_{train} and \mathcal{I}_{test} , respectively, with about $|\mathcal{I}_{train}| = 0.8n$ and $|\mathcal{I}_{test}| = 0.2n$.
- Step 2. For each $(L, J, \boldsymbol{p}, B)$, we train a DNN based on subset \mathcal{I}_{train} , and then calculate the testing error based on subset \mathcal{I}_{test} as $\operatorname{err}(L, J, \boldsymbol{p}, B) = \frac{1}{|\mathcal{I}_{test}|} \sum_{i \in \mathcal{T}_{test}} I(\widehat{f}_{L,J,\boldsymbol{p},B}(\widehat{\boldsymbol{\xi}}_{i}^{J})Y_{i} < 0).$
- Step 3. Choose (L, J, p, B), possibly from a preselected set, to minimize err(L, J, p, B).

Speech data

Speech data misclassification rates

Phonemes	FDNN	QD	NB
"aa" vs "ao"	20.744	25.402	25.378
"aa" vs "iy"	0.193	0.288	0.273
"ao" vs "iy"	0.183	0.578	0.232
"ao" vs "dcl"	0.229	0.391	0.472

ADNI data

Shuoyang Wang (Yale University)

ADNI data misclassification rates

Takeaways

Motivation: Whether and which of existing functional classifiers are statistically optimal? How to construct an optimal functional classifier with better performances?

Takeaways

Motivation: Whether and which of existing functional classifiers are statistically optimal? How to construct an optimal functional classifier with better performances?

Novelty: Establish the first minimax theory for multi-dimensional functional data classification problem under non-Gaussian assumption.

Takeaways

Motivation: Whether and which of existing functional classifiers are statistically optimal? How to construct an optimal functional classifier with better performances?

Novelty: Establish the first minimax theory for multi-dimensional functional data classification problem under non-Gaussian assumption.

Importance: Understand how the "best" functional classifier looks like, as well as provide a guidance to find the "best" classifiers.

References I

Araki, Y., Konishi, S., Kawano, S., and Matsui, H. (2009). Functional logistic discrimination via regularized basis expansions. Communications in Statistics. Theory and Methods, 38(16-17):2944–2957. Biau, G., Bunea, F., and Wegkamp, M. (2005). Functional classification in hilbert spaces. IEEE Trans. Info. Theory, 51:2163â2172. Biau, G., Cérou, F., and Guyader, A. (2010). Rates of convergence of the functional k-nearest neighbor estimate. IEEE Trans. Info. Theory, 56:2034-2040. Dai, X., Müller, H.-G., and Yao, F. (2017). Optimal Bayes classifiers for functional data and density ratios. Biometrika, 104(3):545-560.

Delaigle, A. and Hall, P. (2012). Achieving near-perfect classification for functional data. Journal of the Royal Statistical Society, Series B, 74:267–286.