Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference

Ruoxuan Xiong and Markus Pelger

Stanford University

Motivation

Problem: Large dimensional panel data with missing entries is prevalent:

- Macroeconomic data: staggered releases, mixed frequencies
- Program evaluation: Staggered treatment design
- Financial data: Mergers, new firms, bankruptcy
- Surveys: Panel attrition
- Recommender system: Netflix challenge

Our Goal: Impute missing values and estimate latent factor structure for panel with general observational pattern

- Simple all-purpose estimator for latent factor structure and data imputation for essentially any missing pattern
- Inferential theory for latent factor models and imputed values under general approximate factor model
- Key application: Casual inference
 Counterfactual outcomes modeled as missing values
 Individual treatment effects at any time with unobserved factors

Motivating Example: Publication Effect on Investment Strategies

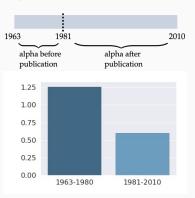
Question: Does academic publication of a strategy affect this strategy's return?

- Intuition: After publication traders exploit strategy and drive down profits
- Illustrative example (Banz 1981): Size strategy (small-minus-big portfolio)
 Smaller companies have higher average returns (published in 1981)
- Investment performance measure: Mean return in excess of a market index (alpha= outperformance relative to market)

Motivating Example: Publication Effect on Investment Strategies

Question: Does academic publication of a strategy affect this strategy's return?

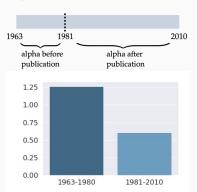
- Intuition: After publication traders exploit strategy and drive down profits
- Illustrative example (Banz 1981): Size strategy (small-minus-big portfolio)
 Smaller companies have higher average returns (published in 1981)
- Investment performance measure: Mean return in excess of a market index (alpha= outperformance relative to market)



Motivating Example: Publication Effect on Investment Strategies

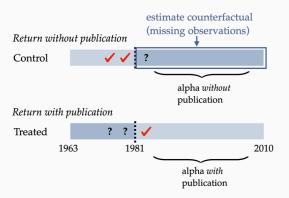
Question: Does academic publication of a strategy affect this strategy's return?

- Intuition: After publication traders exploit strategy and drive down profits
- Illustrative example (Banz 1981): Size strategy (small-minus-big portfolio)
 Smaller companies have higher average returns (published in 1981)
- Investment performance measure: Mean return in excess of a market index (alpha= outperformance relative to market)



Simple before-after analysis not appropriate! It does not control for time-varying features.

This Paper: A Causal Inference Approach



- Experiments have identical control and treatment groups
- Fundamental problem here: Only observe treated or control outcomes
- Our approach: Model counterfactual as missing observations and impute missing values
- Counterfactual = mimicking average of untreated observations

This Paper: New Methodology

- Large-dimensional panel data: Many strategies' returns over many periods.
- Complex treatment pattern: Strategies are published at different times with different probabilities

Observational pattern for the control panel

- No pre-specified model: Use general statistical factors to impute counterfactual returns without a prior what makes strategies similar
- A general causal inference approach: Model counterfactual outcomes as missing observations to obtain entry-wise control and test individual and weighted effects

Importance

Causal inference on panel data:

Example: Publication effect on risk factors, Smoking regulation in different states

Problem: When and where is the intervention effective?

Our solution: Tests for entry-wise and weighted treatment effects

Importance: Goes beyond mean effects without assuming prespecified covariates

Large-dimensional factor modeling

Example: Panel of macroeconomic data or stock returns

Problem: How to estimate a factor model from incomplete data?

Our solution: Estimator for the factor model with confidence interval Importance: Input for other applications, for example risk factors

Missing data imputation

Example: Financial data, mixed frequency data, users' ratings at Netflix

Problem: Whether to use imputed value?

Our solution: Estimator for each entry with confidence interval

Importance: Include observations with incomplete data instead of leaving them out for

analysis which can lead to bias and efficiency loss

Related Literature (Incomplete and Partial List)

Factor modeling

- Full observations with inferential theory: Bai and Ng 2002, Bai 2003, Fan et al. 2013, Pelger and Xiong 2020a+b, Lettau and Pelger 2020a+b
- Partial observations: Jin et al. 2020, Bai and Ng 2020, Cahan, Bai and Ng 2021, Stock and Watson 2002

Causal inference on panel data

- Difference in differences: Card 1990, Athey and Imbens 2018
- Synthetic control methods: Abadie et al. 2010, , Abadie et al. 15, Doudchenko and Imbens 2016, Li 2019
- Matrix completion: Athey et al. 2018

Matrix completion

- Independent sampling: Candes and Recht 2009, Mazumder et al 2010, Negahban and Wainright 2012
- Dependent sampling: Athey et al. 2018
- Independent sampling with inferential theory: Chen et al. 2019

Theory: Model and Estimation

Model Setup: Approximate Latent Factor Model

Approximate factor model: Observe Y_{it} for N units over T time periods

$$Y_{it} = \underbrace{\bigwedge_{i=1}^{T} \underbrace{F_t}_{k \times 1}}_{1 \times k} + e_{it}$$

In matrix notation:

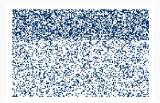
$$\underbrace{Y}_{N\times T} = \underbrace{\Lambda}_{N\times k} \underbrace{F}^{\top} + \underbrace{e}_{N\times T}$$

- N and T large
- Factors F_t explain common time-series movements
- Loadings Λ_i capture correlation between units
- Factors and loadings are latent and estimated from the data
- Common component $C_{it} = \Lambda_i^{\top} F_t$
- Idiosyncratic errors $\mathbb{E}[e_{it}] = 0$
- Number of factors k fixed
- \Rightarrow Estimate Λ_i , F_t , C_{it} and use estimated C_{it} to impute missing Y_{it}

General Observational Pattern

Observation matrix
$$W = [W_{it}] : W_{it} = \begin{cases} 1 & \text{observed} \\ 0 & \text{missing} \end{cases}$$

• W can depend on Λ , but independent of F and e



- Missing uniformly at random $P(W_{it} = 1) = p$
- Cross-section missing at random $P(W_{it} = 1) = p_t$
- Time-series missing at random $P(W_{it} = 1) = p_i$

- Staggered treatment adoption $P(W_{it} = 1) = p_{it}$ Once missing stays missing: $W_{is} = 0$ for $s \ge t$
- Mixed-frequency observations
 P(W_{it} = 1) = p_{it}
 Equivalent to staggered design after reshuffling

Estimation of the Factor Model

- **Step 1** Estimate sample covariance matrix $\tilde{\Sigma}$ of Y using only observed entries: $\tilde{\Sigma}_{ij} = \frac{1}{|Q_{ij}|} \sum_{t \in Q_{ij}} Y_{it} Y_{jt}$, where $Q_{ij} = \{t : W_{it} = 1 \text{ and } W_{jt} = 1\}$ are times where both units are observed
- **Step 2** Estimate loadings $\tilde{\Lambda}$ (standard):

Apply principal component analysis (PCA) to $\tilde{\Sigma} = \frac{1}{N} \tilde{\Lambda} \tilde{D} \tilde{\Lambda}^{\top}$

Step 3 Estimate factors \tilde{F} with regression on loadings for observed entries:

$$ilde{\mathcal{F}}_t = \left(\sum_{i=1}^N W_{it} ilde{\mathsf{\Lambda}}_i ilde{\mathsf{\Lambda}}_i^ op
ight)^{-1} \left(\sum_{i=1}^N W_{it} ilde{\mathsf{\Lambda}}_i Y_{it}
ight)$$

Step 4 Estimate common components/missing entries $\tilde{C}_{it} = \tilde{\Lambda}_i^{\top} \tilde{F}_t$

Extension: A propensity weighted estimator: replace W_{it} by $\frac{W_{it}}{P(W_{it}=1|S_i)}$ in Step 3 for some observed covariates S_i

Assumptions: Approximate Factor Model

Assumption 1: Approximate Factor Model

1. Systematic factor structure: Σ_F and Σ_Λ full rank

$$\frac{1}{T} \sum_{t=1}^{T} F_t F_t^{\top} \stackrel{p}{\to} \Sigma_F \qquad \frac{1}{N} \sum_{i=1}^{N} \Lambda_i \Lambda_i^{\top} \stackrel{p}{\to} \Sigma_{\Lambda}$$

- 2. Weak dependence of errors: bounded eigenvalues of correlation and autocorrelation matrix for errors

 Simplification for presentation: $e_{it} \stackrel{iid}{\sim} (0, \sigma_e^2)$, $\mathbb{E}[e_{it}^8] < \infty$
- 3. Factors F_t and errors e_{it} independent
- 4. Uniqueness of factor rotation: Eigenvalues of $\Sigma_{\Lambda}\Sigma_{F}$ distinct
- 5. Bounded moments: $\mathbb{E}[\|F_t\|^4] < \infty$, $\mathbb{E}[\|\Lambda_i\|^4] < \infty$ Simplification for presentation: $F_t \stackrel{\text{i.i.d.}}{\sim} (0, \Sigma_F)$, $\Lambda \stackrel{\text{i.i.d.}}{\sim} (0, \Sigma_\Lambda)$
- Standard assumptions on large dimensional approximate factor model
- ⇒ Conventional PCA consistent and asymptotically normal with full observations

Assumptions: Observation Pattern

Assumption 2: Observational Pattern

- 1. W independent of F and $e \Rightarrow$ Important: W can depend on Λ
- 2. "Sufficiently many" cross-sectional observed entries

$$\frac{1}{N} \sum_{i=1}^{N} \Lambda_{i} \Lambda_{i}^{\top} W_{it} \xrightarrow{p} \Sigma_{\Lambda,t} \qquad \text{full rank for all } t$$

3. "Sufficiently many" time-series observed entries

$$\frac{1}{N} \sum_{i=1}^{N} \Lambda_{i} \Lambda_{i}^{\top} \frac{1}{|Q_{ij}|} \sum_{t \in Q_{ij}} F_{t} F_{t}^{\top} \stackrel{P}{\to} \text{full rank matrix for all } j$$

4. "Not too many" missing entries: $q_{ij} = \lim_{T \to \infty} |Q_{ij}|/T \ge \underline{q} > 0$ and

$$\begin{split} & \omega_{jj} = \lim_{N \to \infty} \frac{1}{N^2} \sum_{i=1}^{N} \sum_{l=1}^{N} \frac{q_{ij,lj}}{q_{ij}q_{ij}} \text{ with } q_{ij,kl} = \lim_{T \to \infty} \frac{1}{|Q_{ij} \cap Q_{kl}|}; \\ & \omega_{j} = \lim_{N \to \infty} \frac{1}{N^3} \sum_{i=1}^{N} \sum_{l=1}^{N} \sum_{l=1}^{N} \sum_{k=1}^{N} \frac{q_{ii,kj}}{q_{il}q_{kj}}; \\ & \omega = \lim_{N \to \infty} \frac{1}{N^4} \sum_{i=1}^{N} \sum_{l=1}^{N} \sum_{l=1}^{N} \sum_{k=1}^{N} \frac{q_{ii,kj}}{q_{il}q_{kj}} \text{ exist.} \end{split}$$

- ⇒ Very general pattern that can depend on latent factor model
- Special case: Missing at random: $\omega_{ii} = 1/p$, $\omega_i = 1$, $\omega = 1$
- Caveat: Observed entries proportional to N and T, but we show how to relax it

Asymptotic Results

Inferential Theory

Theorem 1: Loadings

Under Assumptions 1 and 2, it holds for $N, T \to \infty$ and $\sqrt{T}/N \to 0$:

$$\boxed{\sqrt{T}(H^{-1}\tilde{\mathsf{\Lambda}}_j - \mathsf{\Lambda}_j) \xrightarrow{d} \mathcal{N}\Big(0, \omega_{jj} \cdot \Sigma^{\mathsf{obs}}_{\mathsf{\Lambda}} + (\omega_{jj} - 1)\Sigma^{\mathsf{miss}}_{\mathsf{\Lambda}, j}\Big)}$$

- Convergence rate is √T
- H is a standard rotation matrix
- Missing pattern weight $\omega_{jj} = \lim_{N \to \infty} \frac{1}{N^2} \sum_{i=1}^N \sum_{l=1}^N \frac{q_{ij,lj}}{q_{ij}q_{lj}}$, $\omega_{jj} \ge 1$ full observations: $\omega_{jj} = 1$, missing at random $\omega_{jj} = 1/p$
- Conventional covariance matrix $\Gamma_{\Lambda}^{\text{obs}} = \Sigma_F^{-1} \sigma_e^2$
- Variance correction term $\sum_{\Lambda,j}^{\text{miss}}$

Inferential Theory

Theorem 2: Factors

Under Assumptions 1 and 2, it holds for $N, T \to \infty$ and $\sqrt{N}/T \to 0$:

$$\boxed{\sqrt{\delta}(H^{\top}\tilde{F}_t - F_t) \xrightarrow{d} \mathcal{N}\Big(0, \frac{\delta}{N}\Sigma^{\text{obs}}_{F,t} + \frac{\delta}{T}(\omega - 1)\Sigma^{\text{miss}}_{F,t}\Big)}$$

- Convergence rate is $\delta = \min(N, T)$
- Missing pattern weight $\omega = \lim_{N \to \infty} \frac{1}{N^4} \sum_{i=1}^N \sum_{l=1}^N \sum_{j=1}^N \sum_{k=1}^N \frac{q_{li,kj}}{q_{li}q_{kj}}$ For full observations or missing at random: $\omega = 1$
- Conventional covariance matrix $\sum_{F,t}^{\text{obs}} = \sum_{\Lambda,t}^{-1} \sigma_e^2$
- Variance correction term $\sum_{F,t}^{\text{miss}}$
- \Rightarrow Inferential theory for common components C_{it} based on

$$\begin{split} &\sqrt{\delta}\left(\tilde{C}_{it}-C_{it}\right)=\sqrt{\delta}\left(H^{-1}\tilde{\Lambda}_{i}-\Lambda_{i}\right)^{\top}F_{t}+\sqrt{\delta}\Lambda_{i}^{\top}\left(H^{\top}\tilde{F}_{t}-F_{t}\right)+o_{p}(1),\\ \text{convergence rate is min}\left(\sqrt{T},\sqrt{N}\right). \end{split}$$

Treatment effect for staggered design with $T_{0,i}$ control and $T_{1,i}$ treated

$$Y_{it}^{(\theta)} = \underbrace{\Lambda_{i}^{(\theta)}^{\top} F_{t}^{(\theta)}}_{C_{t}^{(\theta)}} + e_{it}^{(\theta)}, \quad \theta = \begin{cases} 1 & \text{treated (missing)} \\ 0 & \text{control (observed)} \end{cases}$$

We consider three different effects:

- 1. Individual treatment effect: $\tau_{it} = C_{it}^{(1)} C_{it}^{(0)}$
- 2. Average treatment effect: $au_i = \frac{1}{T_{1,i}} \sum_{t=T_{0,i}+1}^{T} au_{it}$
- 3. Weighted average treatment effect: $\tau_{\beta,i} = (Z^\top Z)^{-1} Z^\top \tau_{i,(T_{0,i}+1):T}$

Inferential theory of \tilde{C}_{it} provides the test statistics for three effects.

Simulation

Simulation Design

Comparison between the four methods that provide inferential theory

- 1. XP_{SIM} : Our simple method \tilde{C}
- 2. XP_{PROP} Our propensity-weighted method \tilde{C}^{S}
- 3. JMS (Jin, Miao and Su (2020)): Assuming missing at random
- 4. BN (Bai and Ng (2020)): Combined block PCA

We compare the relative MSE $\sum_{i,t} (\tilde{C}_{it} - C_{it})^2 / \sum_{i,t} C_{it}^2$

- The data generating process is $X_{it} = \Lambda_i^\top F_t + e_{it}$
- 2 factors
- $\Lambda_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_2)$, $F_t \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_2)$ and $e_{it} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$
- ⇒ Our method allows for the most general observation pattern
- ⇒ Out method provides the most efficient estimation

Simulation N = 250, T = 250

	Observation Pattern	W_{it}	XP	$\mathrm{XP}_{\mathrm{PROP}}$	$_{ m JMS}$	BN
	Random	obs	0.015	0.015	0.023	348.300
		miss	0.015	0.015	0.021	363.885
		all	0.015	0.015	0.023	352.113
	Simultaneous	obs	0.012	0.012	0.124	0.012
		miss	0.020	0.020	0.184	0.017
		all	0.014	0.014	0.139	0.013
	Staggered	obs	0.017	0.017	0.366	0.073
		miss	0.043	0.043	0.318	0.087
		all	0.027	0.027	0.347	0.078
	Random	obs	0.019	0.020	0.077	347.082
	W depends on S	miss	0.024	0.024	0.067	360.409
		all	0.021	$\boldsymbol{0.021}$	0.073	352.113
	Simultaneous	obs	0.032	0.040	0.703	0.141
	W depends on S	miss	0.231	0.256	0.521	0.279
		all	0.129	0.145	0.615	0.209
	Staggered	obs	0.016	0.018	0.272	0.117
	W depends on S	miss	0.064	0.069	0.346	0.186
		all	0.033	0.036	0.299	0.142

 $[\]Rightarrow$ XP is the most precise

Conclusion

Conclusion

A new method for latent factor estimation with missing data:

- Simple all-purpose estimator for latent factor structure and data imputation
 Easy-to-adopt and applies to essentially any missing pattern
- Extension to propensity-weighted estimator:
 Less efficient but can be more robust to misspecification
- Confidence interval for each estimated entry under general and nonuniform observation patterns

Key application in causal inference:

- General tests for entry-wise and weighted treatment effects
- Generalizes conventional causal inference techniques to large panels and controls automatically for unobserved covariates

Empirical results in a companion paper:

- Weaker publication effect of investment anomaly strategies than naive before-after analysis
- Well-known strategies have no significant publication effect
 consistent with compensation for systematic risk
- 15% of strategies exhibit statistical significant reduction in average returns and outperformance of market