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Motivation

Problem: Large dimensional panel data with missing entries is prevalent:

e Macroeconomic data: staggered releases, mixed frequencies
e Program evaluation: Staggered treatment design

e Financial data: Mergers, new firms, bankruptcy

Surveys: Panel attrition

e Recommender system: Netflix challenge

Our Goal: Impute missing values and estimate latent factor structure for panel
with general observational pattern

e Simple all-purpose estimator for latent factor structure and data
imputation for essentially any missing pattern

e Inferential theory for latent factor models and imputed values under
general approximate factor model

e Key application: Casual inference
Counterfactual outcomes modeled as missing values
Individual treatment effects at any time with unobserved factors



Motivating Example: Publication Effect on Investment Strategies

Question: Does academic publication of a strategy affect this strategy’s return?

e Intuition: After publication traders exploit strategy and drive down profits

e lllustrative example (Banz 1981): Size strategy (small-minus-big portfolio)
Smaller companies have higher average returns (published in 1981)

e Investment performance measure: Mean return in excess of a market index
(alpha= outperformance relative to market)
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This Paper: A Causal Inference Approach

estimate counterfactual

missing observations
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e Experiments have identical control and treatment groups

Fundamental problem here: Only observe treated or control outcomes
e Our approach: Model counterfactual as missing observations and impute
missing values

Counterfactual = mimicking average of untreated observations



This Paper: New Methodology

e Large-dimensional panel data: Many strategies’ returns over many periods.
e Complex treatment pattern: Strategies are published at different times

with different probabilities
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Strategy
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Observational pattern for the control panel

e No pre-specified model: Use general statistical factors to impute
counterfactual returns without a prior what makes strategies similar

e A general causal inference approach: Model counterfactual outcomes as
missing observations to obtain entry-wise control and test individual and

weighted effects



Importance

Causal inference on panel data:

Example: Publication effect on risk factors, Smoking regulation in different states
Problem: When and where is the intervention effective?

Our solution: Tests for entry-wise and weighted treatment effects

Importance: Goes beyond mean effects without assuming prespecified covariates

Large-dimensional factor modeling

Example: Panel of macroeconomic data or stock returns

Problem: How to estimate a factor model from incomplete data?
Our solution: Estimator for the factor model with confidence interval
Importance: Input for other applications, for example risk factors

Missing data imputation

Example: Financial data, mixed frequency data, users’ ratings at Netflix
Problem: Whether to use imputed value?
Our solution: Estimator for each entry with confidence interval

Importance: Include observations with incomplete data instead of leaving them out for

analysis which can lead to bias and efficiency loss
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e Independent sampling with inferential theory: Chen et al. 2019



Theory: Model and Estimation



Model Setup: Approximate Latent Factor Model

Approximate factor model: Observe Y for N units over T time periods
Yie = /\,T Fi +eir
~—~
1xk kX1

In matrix notation:

AN FT + e
~ = =
NxT Nxk kxT NxT

N and T large

e Factors F; explain common time-series movements

e Loadings /\; capture correlation between units

e Factors and loadings are latent and estimated from the data
e Common component C;; = A, F;

e |diosyncratic errors E[e;] = 0

e Number of factors k fixed

= Estimate A\;, F:, Ci and use estimated Cj; to impute missing Y



General Observational Pattern

. . 1 observed
Observation matrix W = [W;| : Wi =
0 missing

e |/ can depend on /A, but independent of F and e

e Staggered treatment adoption
e Missing uniformly at random P(Wi =1) = piz
P(W,=1)=p Once missing stays missing:

e Cross-section missing at Wis =0 fors >t

random P(W = 1) = p; e Mixed-frequency observations
e Time-series missing at random P(Wi = 1) = pit
P(Wi =1) = pi Equivalent to staggered design
after reshuffling



Estimation of the Factor Model

Step 1 Estimate sample covariance matrix 5 of Y using only observed entries:
Y= ﬁ Yicq; YieYie, where Qj = {t: Wi =1 and W, =1} are times
where both units are observed

vi?2?
v.?

Vi A v|?
i Pn

Step 2 Estimate loadings /A (standard):

o o w »

Apply principal component analysis (PCA) to & = LADA'

Step 3 Estimate factors F with regression on loadings for observed entries:
N L/ N
Fe= <Z vn//tA;AfT) (Z WiAi v)
i=1 i=1

Step 4 Estimate common components/missing entries Ce = A F:

Extension: A propensity weighted estimator: replace W by ﬁ in Step

3 for some observed covariates S;



Assumptions: Approximate Factor Model

Assumption 1: Approximate Factor Model

1. Systematic factor structure: > and >, full rank
1 1Y

?ZHFIQZF NZA,—/\T&ZA
t=1 i=1

2. Weak dependence of errors: bounded eigenvalues of correlation and
autocorrelation matrix for errors »
Simplification for presentation: e;; ~ (0,02), Elef] < co

3. Factors F: and errors e;; independent
4. Uniqueness of factor rotation: Eigenvalues of >, > distinct
Fel|*] < oo, E[[|Ai]*] < oo
Simplification for presentation: F; e (0,XF), A gt (0,%7)

5. Bounded moments: |

e Standard assumptions on large dimensional approximate factor model

= Conventional PCA consistent and asymptotically normal with full observations
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Assumptions: Observation Pattern

Assumption 2: Observational Pattern

1. W independent of F and e = Important: /' can depend on A

2. “Sufficiently many” cross-sectional observed entries

N
= Z/\ A Wi B 50 full rank for all ¢
i=1

3. “Sufficiently many” time-series observed entries

- Z Z FtFT — full rank matrix for all j
‘QU‘ tEQy

4. “Not too many” missing entries: g;; = lim7_, .. |Q;|/T > g > 0 and
. 1 N N Gl s . Qk/\
wjj = limpy_ 0o N2 Zi*l 2171 ﬁ with qij kI = limr_ 00
o F 1 N N N G
wj = limy_ 00 N3 2im1 2001 2k=1 q,,%

w = limy_ 00 = T Zl, Z, 12] 1Zk 1 q,/qk: exist.

120 Cul

= Very general pattern that can depend on latent factor model

® Special case: Missing at random: wj; = 1/p, w; =1, w =1

e Caveat: Observed entries proportional to N and T, but we show how to relax it
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Asymptotic Results




Inferential Theory

Theorem 1: Loadings
Under Assumptions 1 and 2, it holds for N, T — oo and ﬁ/N — 0:

VT(HA; = Aj) & ,e\f(o,wjj SRy 1)2:];5)

Convergence rate is \/ T

H is a standard rotation matrix

issi i wi = li 1 N N 95
Missing pattern weight w;; = limy e 57 22y D omg agay Wi >1
full observations: wj; = 1, missing at random wj; = 1/p
Conventional covariance matrix F‘/’\bs = z;lag

Variance correction term ):/T'J?S
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Inferential Theory

Theorem 2: Factors

Under Assumptions 1 and 2, it holds for N, T — oo and \W/T — 0:

S r obs 4 miss
VE(HT Ee — )—m(o ST +7(w71)z“)

e Convergence rate is 6 = min(/N, T)

P . o 1 N N N N Gk
e Missing pattern weight w = limpy_ oo 7 i1 D0/ D0/ q Dk T
For full observations or missing at random: w = 1

Q Q 0 —1
e Conventional covariance matrix =% = ¥ o2

e Variance correction term ):’,?isf

= Inferential theory for common components C;; based on

V3 (f,t . c,t) =5 (H’I/N\,- — /\;)T Fr + VoA (HT Fe — Ft) + 0p(1),

convergence rate is min (ﬁ \W)

13



Tests for Causal Effects

Treatment effect for staggered design with Ty ; control and T; ; treated

T 1 treated (missin
Yite) _ /\?9) Ft'(g)+e,'(t9)7 9 — ( g)
~—— 0 control (observed)
c®
it
We consider three different effects:

1. Individual treatment effect: 7, = C,-(tl) — C/.(to)

.
2. Average treatment effect: 7, = % Doty 41 Tit
N - 5

3. Weighted average treatment effect: 75; = (ZTZ)AZTTA(TOJH) T

Inferential theory of C;: provides the test statistics for three effects.
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Simulation




Simulation Design

Comparison between the four methods that provide inferential theory

. XPsi: Our simple method €

. XPprop Our propensity-weighted method C°

. JMS (Jin, Miao and Su (2020)): Assuming missing at random
. BN (Bai and Ng (2020)): Combined block PCA

AW N =

We compare the relative MSE Zi.r((-:if - Ge)’/ >, Ch

e The data generating process is Xi = A/ F; + eir
e 2 factors
o A N0, b), Fe " N(0, k) and e < N(0,1)
= Our method allows for the most general observation pattern

= Out method provides the most efficient estimation
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Simulation N = 250, T = 250

Observation Pattern | Wiy | XP ~ XPprop JMS BN
Random obs | 0.015 0.015 0.023 348.300
miss | 0.015 0.015 0.021 363.885
all 0.015 0.015 0.023 352.113
Simultaneous obs | 0.012 0.012 0.124 0.012
miss | 0.020 0.020 0.184 0.017
all 0.014 0.014 0.139 0.013
Staggered obs | 0.017 0.017 0.366 0.073
miss | 0.043 0.043 0.318 0.087
all 0.027 0.027 0.347 0.078
Random obs | 0.019 0.020 0.077 347.082
W depends on S miss | 0.024 0.024 0.067 360.409
all 0.021 0.021 0.073 352.113
Simultaneous obs | 0.032 0.040 0.703  0.141
W depends on S miss | 0.231 0.256 0.521  0.279
all 0.129  0.145 0.615  0.209
Staggered obs | 0.016 0.018 0.272  0.117
W depends on S miss | 0.064 0.069 0.346  0.186
all 0.033  0.036 0.299  0.142

= XP is the most precise
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Conclusion




Conclusion

A new method for latent factor estimation with missing data:

e Simple all-purpose estimator for latent factor structure and data imputation
Easy-to-adopt and applies to essentially any missing pattern

e Extension to propensity-weighted estimator:
Less efficient but can be more robust to misspecification

e Confidence interval for each estimated entry under general and nonuniform
observation patterns

Key application in causal inference:

e General tests for entry-wise and weighted treatment effects

e Generalizes conventional causal inference techniques to large panels and controls
automatically for unobserved covariates

Empirical results in a companion paper:

e Weaker publication effect of investment anomaly strategies than naive
before-after analysis

e Well-known strategies have no significant publication effect
= consistent with compensation for systematic risk

e 15% of strategies exhibit statistical significant reduction in average returns and
outperformance of market
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