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Abstract

We introduce a new, conditionally Gaussian, hierarchical stochastic model for
heavy tailed data, which generalizes the Laplace probability distribution. We
present basic properties of this model and discuss related computational issues.
We also briefly consider inferential aspects of the model as well as its applications.

Motivation

• Normal distribution plays a prominent role in probability and statistics.
• It provides an approximation to sums which often come up in

applications.
• Central limit effect: If {Xi} are IID with finite second moment and

an
n∑
i=1

(Xi + bn) d→ X as n →∞

then X has a multivariate normal distribution.
• Limitations: Lack of flexibility in terms of symmetry and distributional

tails
• Does the normal distribution provide an approximation to the sums when

the number of terms in the sum is random (not a deterministic constant)?
• A random summation frequently arises in applications too:
• In insurance, the random sum can be the total claim for a period.

Figure 1: Empirical distributions of sums of uniform random variables [−1, 1] using 10, 000 sim-
ulations. Top: Histogram plots. Bottom: Boxplots. Left: Deterministic sum of 100. Middle:
Random sum over Geometric, N where E(N) = 100. Right: Random sum over Discrete Pareto,
N where E(N) = 100.

Random Summation Scheme

• An approach is to replace the deterministic n in the sum by a
random number of terms which allows for skewness and heavy tails
that goes beyond normality.
• Assume: {Np, p ∈ (0, 1)} - family of positive, integer-valued random

variables such that Np
p→∞ and pNp

d→ W as p→ 0.
• W is a non-negative random variable.
• If {Xi} are IID with finite variance and

ap

Np∑
i=1

(Xi + bp) d→ Y as p→ 0,

then the stochastic representation of Y is given by
Y d= mW +W 1/2X

where m ∈ Rd, and X is multivariate normal Nd(0,Σ)
• Y can be skewed and heavy-tailed.
• Our proposal: use a family {Np, p ∈ (0, 1)} which allows heavy tails.
• The Discrete Pareto (DP), denoted by DP (α, p), gives rise to heavy

tails and has the PDF

P(Np = k) =
(

1
1− α(k − 1) log(1− p)

) 1
α

−
(

1
1− αk log(1− p)

) 1
α

,

where k ∈ N, α > 0, p ∈ (0, 1).
• As p→ 0, we have pNp

d→ W , where W has Pareto (Type II, aka
Lomax) distribution denoted by P (α) and given by the SF

P(W > x) =
(

1
1 + αx

) 1
α

, x > 0.

• Note: As α→ 0, the DP (α, p) turns into the geometric distribution
and the Pareto variable W becomes standard exponential EXP (1)
hence we obtain a geometric/exponential dual pair where Y is
multivariate asymmetric Laplace (AL) distribution (see, e.g., Kotz
et al., 2001).
• We proceed by breaking down W into two independent

components E and T given by

W
d= E

T
where E is standard exponential and T is gamma with both
shape/scale equal to 1/α.
• This shows that Y is a mixture of skew Laplace distributions.
• One can develop basic characteristics and properties of Y from their

AL analogs.

Pareto-Normal case (PDF and CDF plots)

Figure 2: PDF and CDF plots when W ∼ P (α) using Monte Carlo (MC) Simulations.

Parameter Estimation

• Using the method of moments estimation (MME) and the EM
Algorithm approaches, the parameters were estimated with the following
results.

True MME EM Algorithm
α α̂ (MSE) α̃ (MSE)
0.7 0.712071 (1.153833) 0.6695787 (0.067806)
0.7 0.6008105 (0.757494) 0.5678054 (0.065786)
0.7 0.6744689 (1.887113) 0.6240472 (0.072949)
1 0.767261 (0.791302) 0.9590148 (0.055194)
1 0.8240785 (1.144796) 0.9445769 (0.089651)
1 0.8855927 (1.495917) 0.8996565 (0.134264)
5 4.7322077 (0.92606) 4.3190482 (0.650525)
5 4.8769673 (0.816825) 4.1758659 (0.928343)
5 4.8570168 (0.95837) 3.5953683 (2.223461)
True MME EM Algorithm
σ σ̂ (MSE) σ̃ (MSE)
0.25 0.2738525 (0.008788) 0.2545343 (0.001037)
1 1.1108807 (0.133213) 1.046549 (0.021953)
10 11.399611 (15.939351) 10.391575 (2.420919)
0.25 0.2886389 (0.009714) 0.2558775 (0.00127)
1 1.1214201 (0.145042) 1.0235344 (0.025844)
10 11.2181388 (17.825127) 10.3378394 (4.07772)
0.25 0.2801455 (0.009462) 0.2472176 (0.002892)
1 1.1181092 (0.174252) 0.9889791 (0.053941)
10 11.541484 (20.864484) 9.5775141 (6.066282)

Table 1: Estimates using 150 observations with 1000 simulations.

Summary

A snap-shot of an on-going project leading to:
• Flexible univariate and multivariate probability distributions that

incorporate skewness and heavy tails
• Laplace-like univariate distributions, highly peaked at the mode
• New class of Pareto - normal distributions
• Generalizations connected with mixtures of Laplace distributions
• Computational practical challenges with these models: approximation and

estimation
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