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Background

® Many applications with unique geometry including boundaries or barriers.
® Traditional spatial Gaussian process (GP) models ignore the unique geometry
of the domain.
= |nappropriate smoothing over physical barriers
= Likely produce sub-optimal results
@ Traditional GP has high computational cost O(n?’):
= Prohibitive already if n > 50,000.
= Recent & active development of scalable GP
models whose computational cost grows linearly
with n.




® Aim to construct a new scalable GP model that incorporates constrained
domains.
® In particular, we want the new GP to
" Produce physically sensible kriging,
" |nduce physically sensible covariance behavior,
" Mimic geodesic distance-based covariance without loss of scalability.
o Typical geodesic distance estimation is also an expensive operation, 0(n?).




Methods

® Bayesian hierarchical spatial regression
y=XB+wH+e, e ~N(0,72%L,)
w ~ GP(0,C(, [6))

= Computational bottleneck in computing the joint density of w,,s = (wq, ==+, w;,)T
1

_1 1 ~
p(wyq, -, wy|0) = N(0,Cy) < |Cy| 2 exp (_EWObSTCQ 1Wobs)
Costly! 0(n?) Costly! 0(n?)

o W; = W(Si)
o nisthe number of spatial locations.




Methods

® Vecchia (1988)

= Approximate the joint density with lower-dimensional conditional densities to
ease computational burden.

n
p(Wlf Y Wn) = Hp(wilwlf T Wi—l)
i=1

= Lots of redundant information in the conditioning set {wy, :--,w;_4} for large i’s.
= p(w;lwy, -, wi_1) = p(w;|w;,y,) where w;,, is a conditioning set of at most
m (K n) elements from {wy, -+, w;_1}.

n
p(er"'rWn) ~ ﬁ(er”';Wn) = ﬂp(wllwlm)
i=1




Methods

® Vecchia (1988) to Nearest Neighbor Gaussian Process (NNGP) (2016)
= One possible choice of w;,

Wi W3 WgWyg - Wi—g - _ .
o ®— Euclidean distance
\ )
Y

min(i — 1,m)

" Wim = {X»%;W&'“:)(L'—Z;Wi—ﬁ

mm) conditional independence

=) zeros in a precision matrix — sparsity




Methods

® Vecchia (1988) to Nearest Neighbor Gaussian Process (NNGP) (2016)
= One possible choice of w;,

w; W3 Wq Wig - Wj—q - _ :
e— o o o ° &— Euclidean distance

( J
|

min(i — 1,m)

NNGP extends finite-dimensional sparsity to sparsity-inducing spatial processes.
Constructs a scalable and valid spatial process based on nearest neighbors.
Empirically shows that the above-mentioned w;,,, performs better than other
alternatives in a very wide range of scenarios.




Methods

® Visualization of sparsity using directed acyclic graphs (DAGs)

Nearest
m =4 Neighbors




Methods

® What if we know that our measurements lie in a constrained domain?




Methods

® Barrier Overlap-Removal Acyclic Directed Graph Gaussian Process (BORA-
GP)

m=4




Methods

® BORA-GP

1. Specify a multivariate normal distribution over a fixed finite set
S={sy,,sx,} D

k
T ~
Ws = (W(51), "':W(Sk)) ~ N(O: Cs) = HN(W(Si)F Hg,wy(sp, Rs;)
i=1

Hg, = Csn(sp Clg(lsi)' Rs; = Cs; — CSi,N(Si)CIV(lsi)CN(Si),Si
C: base covariance function

N (s;): set of spatial locations in S whose straight line to s; does not overlap
barriers (physically sensible neighbors of s; of size min(i, m))




Methods

® BORA-GP
2. Extend it to the whole domain D

Vs €D\S, w(s)~ N(HSWN(S)IRS)
= N(s) c S physically sensible neighbors of size m

m) 1 & 2 define a valid scalable process
w ~ BORA-GP(0,C(-, |8))
= ( is non-stationary.




Analysis

® Univariate Bayesian spatial regression
y =w+¢€, w~BORA-GP(0,C(:,- |8))
y: log chlorophyll-a level (mg/m3) of March 2021
Exponential covariance Observations (n = 119)
function as a base C
Number of obs n = 119 ¥
2791 new spatial ™ mom)

* -0.2~05
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Analysis

BORA-GP prediction

»
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Full GP prediction

/
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RMSPE*

BORA-GP
0.165

¥ T ¥ T T )
77°W 76°W T75°W 74°W 73°W T72°W

Full GP
0.172

NNGP prediction

/

T ) ¥ T T T
77°W 76°W T75°W 74°W T73°W T72°W

NNGP
0.178

95% CI coverage

98.57%

98.42%

98.42%

Mean 95% CI width

1.110 1.113

*RMSPE: Root Mean
1.172 Squared Prediction Error




Analysis

Truth BORA-GP prediction
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Analysis

BORA-GP prediction Full GP prediction NNGP prediction

Delaware bay?2 5N+
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Analysis

Delaware Bay

RMSPE

BORA-GP

Full GP
0.346

0.356

95% CI coverage

85.96%

87.72%

Mean 95% CI width

1.150

1.210

Chesapeake Bay

RMSPE

BORA-GP
0.214

Full GP
0.296

NNGP
0.300

95% CI coverage

98.18%

95.45%

95.45%

Mean 95% CI width

1.157

1.131

1.192

Duke




Analysis
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Analysis
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Analysis

Estimated stationary Estimated non-stationary
covariance from full GP covariance from BORA-GP
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Analysis

Estimated stationary Estimated non-stationary
covariance from full GP covariance from BORA-GP
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® Does BORA-GP achieve all the goals?
v’ Scalable
m <« n neighbors only (Sparsity-inducing DAG)
v" Account for the domain
v Physically sensible kriging
Using physically sensible neighbors
v Physically sensible covariance behavior
The implied non-stationary covariance does not go beyond barriers
v" Mimicking geodesic distance-based covariance without loss of
scalability
No need to estimate geodesic distance
Covariance resembles water flow
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