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Constrained Domains

https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdMH1chlamday.graph 
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● Many applications with unique geometry including boundaries or barriers. 
● Traditional spatial Gaussian process (GP) models ignore the unique geometry 

of the domain.
§ Inappropriate smoothing over physical barriers
§ Likely produce sub-optimal results 

● Traditional GP has high computational cost 𝒪(𝑛!).
§ Prohibitive already if 𝑛 > 50,000.
§ Recent & active development of scalable GP 

models whose computational cost grows linearly 
with 𝑛.

Background



Goals
● Aim to construct a new scalable GP model that incorporates constrained 

domains. 
● In particular, we want the new GP to 

§ Produce physically sensible kriging, 
§ Induce physically sensible covariance behavior, 
§ Mimic geodesic distance-based covariance without loss of scalability. 

o Typical geodesic distance estimation is also an expensive operation, 𝒪 𝑛! . 



Methods
● Bayesian hierarchical spatial regression

𝑦 = 𝑋𝛽 + 𝑤 + 𝜖, 𝜖 ~ 𝑁(0, 𝜏"𝐼#)
𝑤 ~ 𝐺𝑃(0, 𝐶 ⋅,⋅ 𝜃 )

§ Computational bottleneck in computing the joint density of 𝑤"#$ = (𝑤%, ⋯ ,𝑤&)'

𝑝 𝑤$, ⋯ , 𝑤#|𝜃 = 𝑁 0, 𝐶% ∝ 𝐶%
&$" exp −

1
2𝑤'()

*𝐶%&$𝑤'()

o 𝑤( = 𝑤(𝑠()
o 𝑛 is the number of spatial locations. 

Costly! 𝒪(𝑛!) Costly! 𝒪(𝑛!)



Methods
● Vecchia (1988)

§ Approximate the joint density with lower-dimensional conditional densities to 
ease computational burden. 

𝑝 𝑤%, ⋯ ,𝑤& =/
()%

&

𝑝(𝑤(|𝑤%, ⋯ ,𝑤(*%)

§ Lots of redundant information in the conditioning set 𝑤%, ⋯ ,𝑤(*% for large 𝑖’s. 
§ 𝑝 𝑤( 𝑤%, ⋯ ,𝑤(*% ≈ 𝑝(𝑤(|𝑤(+) where 𝑤(+ is a conditioning set of at most

𝑚 ≪ 𝑛 elements from 𝑤%, ⋯ ,𝑤(*% .

𝑝 𝑤%, ⋯ ,𝑤& ≈ 5𝑝 𝑤%, ⋯ ,𝑤& =/
()%

&

𝑝(𝑤(|𝑤(+)



Methods
● Vecchia (1988) to Nearest Neighbor Gaussian Process (NNGP) (2016)

§ One possible choice of 𝑤(+

§ 𝑤(+ = 𝑤%, 𝑤,, 𝑤!, ⋯ ,𝑤(*,, 𝑤(*%
conditional independence 

zeros in a precision matrix – sparsity

𝑤( 𝑤! 𝑤-𝑤%. 𝑤(*% …
Euclidean distance

min 𝑖 − 1,𝑚

…



Methods
● Vecchia (1988) to Nearest Neighbor Gaussian Process (NNGP) (2016)

§ One possible choice of 𝑤(+

§ NNGP extends finite-dimensional sparsity to sparsity-inducing spatial processes. 
§ Constructs a scalable and valid spatial process based on nearest neighbors.
§ Empirically shows that the above-mentioned 𝑤(+ performs better than other 

alternatives in a very wide range of scenarios.

𝑤( 𝑤! 𝑤-𝑤%. 𝑤(*% …
Euclidean distance

min 𝑖 − 1,𝑚

…



Methods
● Visualization of sparsity using directed acyclic graphs (DAGs) 

𝑚 = 4
Nearest 
Neighbors



Methods
● What if we know that our measurements lie in a constrained domain?

𝑚 = 4



Methods
● Barrier Overlap-Removal Acyclic Directed Graph Gaussian Process (BORA-

GP)
𝑚 = 4



Methods
● BORA-GP

1. Specify a multivariate normal distribution over a fixed finite set 
𝑆 = 𝑠$, ⋯ , 𝑠+ ⊂ 𝒟

𝑤, = 𝑤 𝑠$ , ⋯ , 𝑤 𝑠+
* ~ 𝑁 0, F𝐶, =G

-.$

+

𝑁(𝑤 𝑠- ; 𝐻)!𝑤/ )! , 𝑅)!)

§ 𝐻$" = 𝐶$",0 $" 𝐶0 $"
*% , 𝑅$" = 𝐶$" − 𝐶$",0 $" 𝐶0 $"

*% 𝐶0 $" ,$"

§ 𝐶: base covariance function
§ 𝑁 𝑠( : set of spatial locations in 𝑆 whose straight line to 𝑠( does not overlap 

barriers (physically sensible neighbors of 𝑠( of size min(𝑖,𝑚))



Methods
● BORA-GP

2. Extend it to the whole domain 𝒟
∀𝑠 ∈ 𝒟 ∖ 𝑆, 𝑤 𝑠 ~ 𝑁(𝐻)𝑤/ ) , 𝑅))

§ 𝑁 𝑠 ⊂ 𝑆 physically sensible neighbors of size 𝑚

1 & 2 define a valid scalable process
𝑤 ~ BORA−GP(0, F𝐶 ⋅,⋅ 𝜃 )

§ A𝐶 is non-stationary. 



Analysis
● Univariate Bayesian spatial regression 

𝑦 = 𝑤 + 𝜖, 𝑤 ~ BORA-GP(0, F𝐶 ⋅,⋅ 𝜃 )
● 𝑦: log chlorophyll-a level (mg/m3) of March 2021 
● Exponential covariance 

function as a base 𝐶
● Number of obs 𝑛 = 119
● 2791 new spatial 

locations to predict
● 𝑚 = 10



Analysis

BORA-GP Full GP NNGP

RMSPE* 0.165 0.172 0.178

95% CI coverage 98.57% 98.42% 98.42%

Mean 95% CI width 1.110 1.113 1.172
*RMSPE: Root Mean 
Squared Prediction Error



Analysis
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Analysis

Chesapeake Bay BORA-GP Full GP NNGP

RMSPE 0.214 0.296 0.300

95% CI coverage 98.18% 95.45% 95.45%

Mean 95% CI width 1.157 1.131 1.192

Delaware Bay BORA-GP Full GP NNGP

RMSPE 0.257 0.346 0.356

95% CI coverage 92.98% 85.96% 87.72%

Mean 95% CI width 1.171 1.150 1.210

40% 👏
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Analysis



Conclusions
● Does BORA-GP achieve all the goals? 

ü Scalable
𝑚 ≪ 𝑛 neighbors only (Sparsity-inducing DAG)

ü Account for the domain
ü Physically sensible kriging 

Using physically sensible neighbors 
ü Physically sensible covariance behavior 

The implied non-stationary covariance does not go beyond barriers
ü Mimicking geodesic distance-based covariance without loss of 

scalability 
No need to estimate geodesic distance
Covariance resembles water flow
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