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COVID-19 pandemic

» A novel coronavirus causing infectious respiratory disease.

» Basic reproduction number (Rp): low-mid 2s, (SARS: 2;
HIN1: 1.3 [1]).

» About 16% of COVID-19 positive hospital admissions require
ICU (Feb 2021, Atrium Health).
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Forecasting COVID-19 hospital census

» Healthcare systems need to prepare for surges of hospital

demands.
» COVID-19 hospital census (Census), the number of beds
occupied by COVID-19 positive patients, is a central resource

indicator in planning decisions.
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Prior forecasting models

» Univariate time-series models: ARIMA, SARIMA, ETS [2-4].
» Multivariate time-series models, using leading indicators:

> Hospital admissions [5]

» Google-search trends of COVID-19 terms related to “testing”
[6]

» Number of people flagged by an Internet-based virtual health
screen bot [6]
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Local infection incidence as a leading indicator




Local infection incidence as a leading indicator (cont.)
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Fig 1. Scaled time-series for Census and Incidence for the period May 15, 2020 - December 5,
2020. Transformed Census (blue) and Incidence (red) are linearly standardized to the 0-100 scale.
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Vector Error Correction model (VECM)

VECM is a vector autoregressive (VAR) model which accounts for
cointegration, i.e., stable linear relationships. In its VAR
representation, we have:

y: = n]_yt_]_ “+ ...+ I'Ipyt_p + u+ (th + €t

for time t =1,..., T, where M; (for i =1,...,p) are k x k
coefficient matrices of the lagged series at lag /, v is a k x 1 vector
of constants, D; is a 6 x 1 vector of day-of-the-week seasonal
indicators, ® is a k x 6 coefficient matrix for seasonal indicators,
and €; is a k x 1 vector of random errors.
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Vector Error Correction model (VECM) (cont.)

VECM representation as a transformation of the VAR model:

Ayt =K + nytil + rlAytil + ...+ rpflAytip+1 + d)Dt + €t
=p+aBTy, 1 +T1By, 1+ ..+ T 1By, 1+ OD +e

where Ay, is a k x 1 vector of the differenced series y, — y,_1,
Ni=—(Mjy1+...4+0p) (fori=1,...,p—1),
N=—(-N;—..—MNy). aand B are k x r matrices, where
r = rank(I).

BTy, 1 is a trend-stationary term showing the long-run
cointegration relationship. Thus, a represents the long-run effects.
l1,...,Tp—1 represent the short-run effects.
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Long-range scenario-based forecasting

» High uncertainty near the peak of infection prevalance.

» Univariate time-series models may fail near the peak.

> With cointegration we can leverage subtle, but critical,
changes in Incidence (e.g., concavity) suggesting the

forecasting of Census under different pandemic scenarios.
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Long-range scenario-based forecasting (cont.)
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Fig 2. 60-day projected local Covid-19 infection incidence on the log scale, as of January 9,
2021. Past values (black), worst-case seenario (red), base-case scenario (blue), best-case scenario (green).
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Main results
» The model was specified as a VECM with 7 lags in its VAR

Correlation

representation (p = 7), with 1 cointegration relationship
(p-value < 0.01).
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Fig 3. Autocorrelation functions and Cross-correlation functions of the residuals. (A) Census
residuals, (B) Lagged Census residuals and Incidence residuals, (C) Census residuals and lagged Incidence

residuals (D) Incidence residuals.
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Main results (cont.)

» Cointegration relationship:
BTyt,l = Census;_1 — 0.8013 Incidence;_1

» Long-run effects: BTy, ; had a negative and significant
effect on Census change.

» Short-run effects on Census change from:
» Past Census changes (lag 2).
» Past Incidence changes (lag 1, 2, 4, 5 and 6).
» Day-of-the-week: Census change was significantly higher on
Monday compared to Thursday.
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Goodness-of-fit
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Fig 6. One-step-ahead in-sample and 7-day-ahead out-of-sample predictions. True values (black),
in-sample and out-of-sample predictions (red line), 95% confidence intervals (blue band), 80% forecast in-
tervals (red band). The model is fitted on data from May 15, 2020 to December 5, 2020.
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7-day-ahead forecast performance

» 7-day-ahead Mean Absolute Percentage Error (MAPE) via
time-series cross-validation has a median of 5.9% and a 95th
percentile of 13.4%.

—l |
1] I
20 1 1
- I |
3 I I
S

10 | |
| |
: —’_l7

0 i —/ —

00 0.1 02 03

Mean Absolute Percentage Error

Fig 5. Distribution of the T7-day-ahead Mean Absolute Percentage Error from time-series
cross-validation for the period June 16, 2020 - Navember 28, 2020. Median (blue), 95" percentile
(red).
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Worst-case scenario 60-day-ahead forecast
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Fig 7. 60-day Census forecasts in the worst-case scenario, as of January 9, 2021. Past values
(black), forecasts (red line), 80% forecast intervals (red band).
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Conclusions

» Local infection incidence is cointegrated with Census and has
important short-run and long-run effects on Census.

» The model offers competitive 7-day-ahead forecast
performance.

» Long-range scenario-based forecasting has been successfully
applied to determine the potential for resource capacity to be
exceeded at Atrium Health.
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