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Preamble

As resultant effects of increasing digitization of our so-
ciety and progress in the development of new measure-
ment devices emanating from technological advances,
scientific data have grown in both size n and complexity
p.

This “curse of dimensionality”, (Bellman, 1961) hinders
data visualization, reduces prediction accuracy on fu-
ture observations and makes it difficult to detect the de-
pendence between a response variable and the collec-
tion of the covariates.

To circumvent these challenging statistical problems,
three different approaches exist in statistical literature-
Variable Selection (VS), Dimension Reduction (DR) and
Sufficient Dimension Reduction (SDR)
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Preamble

SDR is akin to VS in that they both try to reduce the
number of variables that predict the response.

VS tries to reduce the number of covariates in the vector
of predictors; whereas SDR tries to reduce the predictor
to a few linear combinations, or a few nonlinear func-
tions, of all the the predictor variables.

VS reduces the data to achieve sparsity, whereas SDR
reduces the data to achieve low rank.

DR lacks information about the response, Y, while SDR
retains all regression information about Y. (Li, 2018)

June 2021 Olorede and Yahya SDSS 2021 3 / 48



Introduction: Sufficient Dimension Reduction (SDR)

Consider a regression or classification problem with univari-
ate response variable, Y , and a p×1 vector, X of continuous
p predictors.

SDR (Cook1994a; Cook1996; Li, 1991) involves finding a
reduction R(X) of dimension d < p that captures all regres-
sion information of Y on X without requiring a pre-specified
parametric model for Y |X.

SDR is a powerful tool to extract the core information hid-
den in the high-dimensional data, for the purpose of classify-
ing or predicting one or several response variables based on
the notion of a statistical concept called sufficiency (Fisher,
1922) derived from conditional independence.
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Introduction: Sufficient Dimension Reduction (SDR)

Numerous SDR methods have been proposed in the statistics lit-
erature since the seminar paper of Li (1991) on Sliced Inverse
Regression (SIR).

Among these methods are the Sliced Average Variance Estimation
(SAVE, Cook and Weisberg, 1991), Principal Hessian Directions
(PHD, Li, 1992), Directional Regression (Li and Wang, 2007), and
the Inverse Regression Estimation (IRE, Cook and Ni, 2005).

Other recently developed methods include Minimum Average Vari-
ance Estimation (MAVE, Xia et al., 2002), Covariance Reduction
(CORE, Cook and Forzani 2008a), Likelihood Acquired Directions
(LAD, Cook and Forzani 2009), Principal Fitted Components (PFC,
Cook 2007; Cook and Forzani 2008b), and the Envelopes model
(Cook, Li, and Chiaromonte, 2010). A more detailed list is in Ma
and Zhu (2013b).
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The Sufficient Dimension Reduction Methodology

Let d < min(n, p) and let βT1 X, . . . , βTd X ∈ Rp define small-
est number of first few linear combinations of the stochastic
covariate vector X so that

Y ⊥⊥ X|(β
T
1 X, . . . , β

T
d X), (1)

where ⊥⊥ signifies statistical independence (Dawid, 1979)
which implies that Y is independent of X given the d linear
combinations βT1 X, . . . , βTd X of X by placing no restrictions
on the regression in equation (1).

If (1) is true, the linear combinations βT1 X, . . . , βTd X are called
sufficient dimension reduction directions or sufficient predic-
tors because they contain all the regression information that
X has about Y .
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Introduction: Sufficient Dimension Reduction (SDR) Problem

The SDR problem relates to estimating a low-dimensional sub-
space S of the predictor space containing the fewest proxy vari-
ables called sufficient predictors that can serve as substitute for
X in the regression without loss of information and without pre-
specifying a parametric model.

Let there exist a p × d matrix B whose columns are the smallest
d linear combinations βT1 X, . . . , βTd X of of the predictors X, such
that

Pr (Y ≤ y |X) = Pr (Y ≤ y |BTX) for all y ∈ R, (2)

The conditional distribution of Y on X is the same as that condi-
tional on BTX.

Then, the regression relation between Y and X can be summa-
rized without losing information by replacing X by BTX.
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What is the problem and why?

Unfortunately, involvement of covariance matrix inversion in
the basic step of SDR methods has plagued their success in
applications where data sets contain high-dimensional pre-
dictors, p and undersized samples, n (n � p) due to covari-
ance matrix ill-conditioning or eigenvalue degeneracy which
poses serious challenge to computational tools.

Another draw back of some existing SDR methods in both
low- and high-dimensional settings is that estimated direc-
tions are hard to interpret.

The existing sparse solutions lack consistency in high di-
mension or require data-dependent weights to the shrinkage
term to force consistency (Bach, 2008; Olorede and Yahya,
2019).
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What has been done about it?

Most of the existing methods either involve non-convex opti-
mization or time-consuming covariance optimization, which
are often based on arbitrary choice of tuning parameters.

Some other existing methods involve computationally inten-
sive sequential framework, which are heavily dependent on
the choice of bootstrap samples.

Some other methods involve step-wise estimation of a sparse
solution for each SDR direction and this does not directly im-
ply variable selection unless an entire row of the basis matrix
(β1, . . . , βd ) is set to zero (Tan et al., 2018).

Some other existing methods involve preliminary gene se-
lection based on time consuming cross-validation for optimal
number of principal components.
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What is the presenter doing (or has done) about it? I

This work addresses the computational challenges plaguing SDR
applications in high-dimensions, using a three-way hybridization
of (SDR), maximum entropy principle (MEP) and information-
theoretic measures of complexity (ICOMP). The specific objec-
tives are to:

1 circumvent limited-sample-size problems in SDR applications
by addressing the “loss of covariance information” based on
Maximum Entropy (ME) Principle;

2 propose a new maximum entropy covariance estimator (MEC)
(Olorede and Yahya, 2019) for efficient SDR estimation in
undersized sample problems;
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What is the presenter doing (or has done) about it? II

3 propose the hybridized and smoothed covariance estima-
tors that generate ridge-type (`2-norm) shrinkage parame-
ters data adaptively for use in the DR step;

4 propose the used of information theoretic maximal en-
tropic covariance complexity measures (ICOMP) (Bozdo-
gan, 1988 and 2010) to replace the popular time-consuming
cross-validation step for generating lasso-type (`1-norm) shrink-
age parameters in the shrinkage regression step; and

5 propose a hybrid regression-type formulation of sufficient di-
mension reduction methods and shrinkage estimation, to pro-
duce sparse and accurate solutions in the large p, small n
data problems.
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Loss of Covariance Information (LoCI)

The LoCI paradigm describes the fact that, in n� p data ap-
plications, covariance regularization by penalizing or shrink-
ing the sample covariance estimate Si or its mixture with the
pooled covariance estimate Sp equally all over the feature
space almost always loses covariance information.

This is because as sample covariance estimates become
ill-posed in high-dimensional applications, the estimates of
the corresponding largest eigenvalues are larger than the
eigenvalues of the true covariance and the smaller ones are
biased towards lower values.

consequently, the regularized covariance estimate loses co-
variance information and hence still almost always remains
irregular or unstable. (Olorede and Yahya, Proposition 3.1)

June 2021 Olorede and Yahya SDSS 2021 12 / 48



The Maximum Entropy Principle (MEP) I

The principle of maximum entropy (ME) principle states that:

The probability distribution which best represents the
current state of knowledge is the one with largest entropy.

The implication: when we make inferences based on in-
complete information, we should draw them from that proba-
bility distribution that has the maximum entropy permitted by
the information we do have (Jaynes, 1982).
Let a p-dimensional sample Xi of class probability πi be nor-
mally distributed with true mean µi and true covariance ma-
trix Σi , i.e.Xi ∼ Np (µi , Σi ).
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The Maximum Entropy Principle (MEP) II

The entropy h (Xi ) of such multivariate distribution is defined
as the negative expected value of the natural logarithm of
the probability density function of Xi , which as emphasized
by Fukunaga (1990), can be written as:

h(Xi ) = –E {ln [p(x |πi )]}

= –E

{
ln

[
1

(2π)
p
2 |Σi |

1
2

exp

[
–

1
2
(x – µi )

T
Σ
–1
i (x – µi )

]]}
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Algorithm 1: Maximum Entropy Covariance (MEC) Estimator

1. Find covariance Si for each sample group i (or slicing category h) and the pooled sample
covariance matrix Sp .

2. Find the maximum entropic sample group covariance estimate Sme.
3. Find the eigenvectors Ψme

i of the convex covariance mixture given by Sme + Sp .

4. Calculate the variance contribution of both Sme and Sp on the Ψme basis, i.e.,

diag(Zme) = diag
[
(Ψme)TSmeΨ

me
]
=
[

ϕ
me
1 ,ϕ

me
2 , . . . ,ϕ

me
p

]
(4)

diag(Zp) = diag
[
(Ψme)TSpΨ

me
]
=
[
ϕ
p
1,ϕ

p
2, . . . ,ϕ

p
p

]
(5)

5. Form a new variance matrix based on the largest values, that is,

Zme
i = diag

[
max

(
mean(ϕme

1 ,ϕ
p
1)
)
, . . . , max(mean(ϕme

p ,ϕ
p
p))
]

(6)

6. Form the MEC estimator, Smec as:

Smec = Ψ
meZme(Ψme)T . (7)
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Proposed Unified Regularized Sufficient Dimension
Reduction Regression Estimation Strategy I

Following ideas in Li (2007), we formulated the sufficient
dimension reduction methods as a generalized eigenvalue
problem of the form:

MΦi = λiGΦi for i = 1, . . . , p (8)

Where M is a nonnegative definite symmetric kernel matrix;
G is a symmetric and positive definite matrix, often taking the
form of the covariance matrix Σx of X; vectors Φ1, . . . , Φp are
eigenvectors satisfying ΦT

j GΦj if i = j , and 0 if i 6= j ; and
λ1 ≥ · · · ≥ λp ≥ 0 are corresponding eigenvalues.
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Proposed Unified Regularized Sufficient Dimension
Reduction Regression Estimation Strategy II

We give a summary of M and G matrices for SIR estimator
in the following generalized eigenvalue formulation of SDR
methods.
Sliced inverse regression (SIR):

M = cov [E{X – E (X) |Y }] G = Σx (9)

Without loss of generality, the generalized eigenvalue prob-
lem in Equation (8) becomes principal component analysis
when M = Σx and G = Ip.
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Proposed Unified Regularized Sufficient Dimension
Reduction Regression Estimation Strategy III

Under appropriate assumptions on the marginal distribution
of X for model (9), it can be shown that the eigenvectors
{Φ1, . . . , Φp} in Equation (8) that correspond to the nonzero
eigenvalues {λ1 ≥, . . . ,≥ λd > 0} form a basis for the cen-
tral subspace under inquiry.
The structural dimension, d is treated as known in the fol-
lowing derivation of sparse dimension reduction for large p,
small n problems.
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Algorithm 2: Proposed Modified Alternating Minimizing

Step 1. Choose the usual sufficient dimension reduction estima-
tor with no lasso constraint as an initial value for α.

Step 2. Given fixed α, solve d independent lasso problems to
obtain the estimate of β = (β1, . . . , βd )

Step 3. For fixed β, carry out singular value decomposition of
G–1/2Mβ = UDVT , and update α = G–1/2UVT .

Step 4. Repeat Steps 2 and 3 until β converges.

Step 5. Normalize β as βj = β/‖βj‖, j = 1, . . . , d .
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The Sparse Sufficient Dimension Reduction Estimator I

In the SSIR-MEC procedure, the eigenvalue problem (8) was
first transformed to regression-type optimization problem based
on Proposition (I) in Li (2007). The lasso (Tibshirani, 1996)
shrinkage parameters were obtained data-adaptively based
on covariance complexity rather than through arbitrary time-
consuming parameter tuning using cross-validation.
As a consequence of the lasso constraint in Proposition 5
in Olorede and Yahya (2019, not shown here), the resulting
estimator in Algorithm II is expected to have some coefficient
shrunk to zero, which leads to easier interpretation.
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The Sparse Sufficient Dimension Reduction Estimator II

Choice of the tuning parameters λ1 and λ2 were made data-
adaptively from the smoothed and hybridized version of the
MEC (HSMEC) and the Bozdogan’s maximum covariance
complexity measures (ICOMP, Bozdogan, 1988 and 2010),
respectively.
The major contributions in this work include replacement of
the usual maximum likelihood covariance estimator G = Σx

with the suitable smoothed and hybridized covariance es-
timators, to circumvent covariance ill-conditioning in high-
dimensional data applications.
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The Sparse Sufficient Dimension Reduction Estimator III

In the regularization stage, we replaced the choice of Akaike-
type model selection criterion for choosing tuning parame-
ters λ1 and λ2 from among several arbitrary values in two
novel statistically meaningful ways. Parameter λ2 is obtained
data-adaptively as the shrinkage value from hybridized smoothed
covariance matrices without cross-validation.
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Bozdogan’s Information Theoretic Measure of Covariance
Complexity (ICOMP) I

Bozdogan’s ICOMP was defined as:

C1F (Σ̂) =
1

4λ̄2
a

p∑
j=1

(λj – λ̄a)2 (10)

Where λ̄a is the arithmetic mean of the eigenvalues. C1F (Σ)
is a second-order equivalent measure of complexity.
It is scale-invariant and C1F (Σ) ≥ 0 with C1F (Σ) = 0 only
when all λj = λ̄a. C1F (Σ) measures the relative variation in
the eigenvalues rather than absolute variation of the eigen-
values.
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Bozdogan’s Information Theoretic Measure of Covariance
Complexity (ICOMP) II

However, because C1F (Σ) values can be greater than 1 and
λ1 cannot exceed 1, relative weights:

Wi =
e
–(C1F –min(C1Fi

))/2∑p
i=1 e

–(C1Fi
–min(C1Fi

))
/2

, (11)

were computed. Each weight is interpreted as probability
that a given C1F is most appropriate. Where i indexes p
dimensions evaluated and C1F denotes maximal complexity
measure of covariance matrix.
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Data Set: Quarter-Hourly Smart Meter Data

This data set (Omitaomu2013, Omitaomuetal2012a, Omi-
taomuetal2012b) contains quarter-hourly (15 minute) elec-
tricity consumption records arising from a sample of n = 56
housing units in the city of Knoxville, Tennessee, USA, for a
period of one month spanning a vector X = (X1, . . . ,Xp)T

with p = 2975 input variables.

The response (outcome) variable vector Y = (Y1, . . . ,Yn)T

representing average electricity consumption (as used for re-
gression example. See results in Table 1) of the n = 56
clients (residents) from the input data was manually curated
from the data by obtaining average of all the 2975 quarter-
hourly (15 minutes) loads per client per day for the 31 days
in the month of January, 2010.
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Quarter-Hourly Electricity Load Profile Data

Instead of the raw average consumption, the response vari-
able Y here is the binary electricity profile/consumption sta-
tus (0 = low, 1 = high) manually curated from the raw smart
meter records, as used for classification example (see re-
sults in Table 2).

Any housing unit whose average monthly electricity consump-
tion is above the overall average electricity consumption for
the n = 56 housing units is considered to have high quarter-
hourly electricity load profile and low quarter-hourly load pro-
file otherwise.
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Results I

In the regression example in Table 1, the use of the HSMEC
estimator in dimension reduction step successfully prevented
SIR from breaking down in the high-dimensional application.

Table 1: OLS Results with first SIR- and SSIR-HSMEC predictors
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Results II

The proposed estimation method achieved excellent regres-
sion performances including adjusted coefficient of determi-
nation (AdjR2) of 98%, tiny root mean square error (RMSE)
of prediction of just 4% with only the first SIR-HSMEC esti-
mate.

NUM1 and NUM2 represent number of shrunken covariates
by the SIR-HSMEC and sparse SIR-HSMEC (SSIR-HSMEC)
dimension reduction steps.
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Results III

The usefulness usefulness, prediction efficiency and flexibil-
ity of the SIR-HSMEC in limited-sample-size application is
further evident in the estimated high absolute correlation of
99% between the estimated first SIR-HSMEC direction and
the response Y .
The tiny p.value 2× 10–16 also reveals that SIR-HSMEC es-
timated linear term of the single index model is significant.

The final model is

ŷi = 0.0074 – 0.0204B1i (12)
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Results IV

Equation 12 utilized the entire p = 2975 covariates in es-
timating the SIR-MEC directions while the sparse version
SSIR-MEC utilized only 296 and 124 covariates in estimat-
ing the first two SIR directions after shrinking NUM1 = 2679
and NUM2 = 2851 original covariates, respectively.

This yielded improved prediction performance and enhanced
model interpretation of the estimated directions for the final
model.
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Results V

In addition to model interpretability, the SSIR-MEC model 13
achieved AdjR2 and RMSE of 95% and 0.03, respectively.
The estimated sparse SSIR-MEC first direction has a strong
association B̂1COR = 0.98 with the response variable, Y as
expected.

ŷi = 0.0449 – 0.0441B1i (13)

These inferences are self-revealing on Figure 1.
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Figure 1: Summary plot for electricity smart meter data. (a) Shows line plot of Y versus

SSIR-MEC 1st predictor (b) shows the 1st two sparse SIR-MEC estimates (c) shows overlayed

prediction of Y , SIR-MEC and SSIR-MEC (d) shows boxplot of Y , SIR-MEC, and SSIR-MEC load

predictions.June 2021 Olorede and Yahya SDSS 2021 32 / 48



Figure 2: Stem plot of 1st SSIR-HSMEC coefficient showing sparseness of solution.
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Classification Example

In the classification example (See results in Table 2), SDR
was performed using the proposed SIR-HSMEC and SSIR-
HSMEC methods.

Only the first estimated sufficient predictor was used as a
single covariate in the reduced data to classify the 56 house-
hold according to their electricity consumption rates.

Using 80:20 holdout data partition scheme, 80% of the re-
duced data were randomly sampled to train seven standard
statistical classifiers for the classification task.

The held out 20% samples were used to validate the classi-
fiers models using several performance metrics.
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Classification Results

Table 2: Binary classification performances with 1st sufficient predictor
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Conclusion I

The unified estimation methods developed in this work and
the new proposals have contributed majorly to existing suffi-
cient dimension reduction knowledge and application in terms
of better prediction of future observations, mitigation of di-
mensionality issues and data visualization without loss of in-
formation.
the proposed MEC estimator utilizes the most stable and in-
formative convex mixture of covariance matrices to achieve
highest classification and regression accuracy in statistical
covariance based methods in limited-sample-size problems.
The proposed MEC estimator fully addresses loss of covari-
ance information in ultrahigh regression and classification
problems.
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Conclusion II

The proposed MEC estimator can also be used in applica-
tions other than SDR to circumvent covariance ill-conditioning.
This work has introduced the use of hybridized smoothed
maximum enropy covariance estimator (HSMEC) for the first
time (to the best of our knowledge) and proposed a new
SDR-HSCE modeling approach to efficiently circumvent co-
variance singularity and eigenvalue degeneracy that plagues
SDR applications with high-dimensional data.
The eigenvalues of the HSMEC are well-conditioned and are
positive definite thereby providing a positive and invertible
plug-in covariance matrix needed in the SDR step.
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Conclusion III

it is believed that proposed unified estimation strategy is a
viable means of classification, dimension reduction regres-
sion, and data visualization in undersized high-dimensional
applications.
It is a new approach that is extensible and applicable to other
supervised statistical learning problems.

June 2021 Olorede and Yahya SDSS 2021 38 / 48



References I

Bach, F. R. (2008). Bolasso: Model Consistent Lasso Esti-
mation through the Bootstrap. Paper presented at 25th Inter-
national Conference on Machine Learning, Helsinki, Finland,
July 5–9, pp. 33–40.

Bellman, R. (1961). Adaptive Control Processes: A Guided
Tour. Princeton University Press, Princeton, NJ.

Bozdogan, H. (1988). ICOMP: A new model-selection crite-
rion. In classification and related methods of data analysis.
Elsevier Science Publishers, Amsterdam. H. H. Bock (Ed.)
series, 599:608.

Bozdogan, H. (2010). Shrinkage Covariance Estimators. Un-
published Lecture Notes

June 2021 Olorede and Yahya SDSS 2021 39 / 48



References II

Cook, R.D. (1994). On the interpretation of regression plots.
Journal of the American Statistical Association 89:177-190.

Cook R. D., Forzani L. (2008a). Covariance Reducing Mod-
els: An Alternative to Spectral Modelling of Covariance.
Biometrika, 95(4), 799-812.

Cook R. D., Forzani L. (2009). Likelihood-Based Sufficient Di-
mension Reduction. Journal of the American Statistical Asso-
ciation, 104(485), 197-208.

Cook R. D., Forzani L. (2008b). Principal Fitted Components
in Regression. Statistical Science, 23(4), 485-501.

June 2021 Olorede and Yahya SDSS 2021 40 / 48



References III

Cook R. D., Li B., Chiaromonte F. (2010). Envelope Mod-
els for Parsimonious and Efficient Multivariate Linear Regres-
sion. Statistica Sinica, 20(3), 927-1010.

Cook, R.D. (1996). Graphics for Regression with a Binary
Response. Journal of the American Statistical Association
91:983-992.

Dawid, A. P. (1979). Conditional Independence in Statisti-
cal Theory. Journal of the Royal Statistical Society, Series
B (Methodological). Published by Royal Statistical Society,
Wiley. 41(1), 1:31. ISSN:00359246, http://www.jstor.org/stable/
2984718

June 2021 Olorede and Yahya SDSS 2021 41 / 48

http://www.jstor.org/stable/2984718
http://www.jstor.org/stable/2984718


References IV

Cook, R.D. & Ni, L. (2005). Sufficient Dimension Reduction
via Inverse Regression: A Minimum Discrepancy Approach.
Journal of the American Statistical Association, 100(470),
927-1010.

Cook, R.D. & Weisberg, S. (1991). Discussion of Li (1991).
Journal of the American Statistical Association 86, 328-332.

Fisher, R.A. (1922). On the Mathematical Foundations of
Theoretical Statistics. Philosophical Transactions of the Royal
Statistical Society A: Mathematical, Physical and Engineering
Sciences. 222, 594-604.

June 2021 Olorede and Yahya SDSS 2021 42 / 48



References V

Fukunaga, K. (1990). Introduction to Statistical Pattern
Recognition (2nd Ed.). Academic Press Professional Inc.,
USA, isbn:0122698517

Jaynes, E.T. (1982). On the Rationale of Maximum-Entropy
Methods. Proc. IEEE, 70, pp. 939-952.

Li, B. (2018). Sufficient dimension reduction: Methods and
Applications with R. Monographs on Statistics and Applied
Probability, CRC Press Taylor & Francis Group 6000 Broken
Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742.

Li, K.-C. (1991). Sliced Inverse Regression for Dimension Re-
duction (with Discussion). Journal of the American Statistical
Association 86:316-342.

June 2021 Olorede and Yahya SDSS 2021 43 / 48



References VI

Li, L. (2007). Sparse sufficient dimension reduction.
Biometrika, 94(3), 603:613.

Li, K.-C. (1992). On Principal Hessian Directions for Data Vi-
sualization and Dimension Reduction: Another Application of
Stein’s Lemma. Journal of the American Statistical Associa-
tion, 87: 1025-1039

Li, B. & Wang, S. (2007). On Directional Regression for Di-
mension Reduction. Journal of American Statistical Associa-
tion, 102(479), 997-1008.

Ma, Y. and Zhu, L. (2013b). A Review on Dimension Reduc-
tion. Int. Statist. Rev. 81, 134-50.

June 2021 Olorede and Yahya SDSS 2021 44 / 48



References VII

Olorede K. O. and Yahya, W.B. (2019). A New Co-
variance Estimator for Sufficient Dimension Reduction in
High-Dimensional and Undersized Sample Problems. Sub-
mitted to journal of Computational and Graphical Statis-
tics,urlabs/1909.13017, https://arxiv.org/pdf/1909.13017.pdf

Omitaomu, O. A., Budhendra, L. B., Christopher, S. M., Jef-
frey, B. K., Amanda, M. N. (2012a). CoNNECT: Data Ana-
lytics for Energy Efficient Communitiesl, American Society of
Mechanical Engineers, 45226, 559-569.

Omitaomu, O. A. (2013). Profiling Real-Time Electricity Con-
sumption Data for Process Monitoring and Control. Institute
of Industrial and Systems Engineers (IISE). In IIE Annual
Conference Proceedings,

June 2021 Olorede and Yahya SDSS 2021 45 / 48

https://arxiv.org/pdf/1909.13017.pdf


References VIII

Omitaomu, O. A., Christopher, S. M., Ian, S. K., Jeffrey, B.,
Kodysh, B. L., Bhaduri, C. A. and ... Aaron, T. M. (2012b). An
Integrated Geovisual Analytics Framework for Analysis of En-
ergy Consumption Data and Renewable Energy Potentials.
Proceedings of the Seventh International Conference on Ge-
ographic Information Science (GIScience)

Tan, K. M., Wang, Z., Zhang, T., Liu, H. & Cook, R.D. (2018).
A convex formulation for high-dimensional sparse sliced
inverse regression. BiometriKa, Oxford University Press,
105(4): 769-782

Xia Y., Tong H., Li W. K., and Zhu L.X. (2002). An adaptive
estimation of dimension reduction space (with discussion). J.
R. Stat. Soc. Ser. B.; 64:363–410.

June 2021 Olorede and Yahya SDSS 2021 46 / 48



References IX

June 2021 Olorede and Yahya SDSS 2021 47 / 48



�

�

June 2021 Olorede and Yahya SDSS 2021 48 / 48


