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Context and objectives

– Context: radiomic data for characterization of head and
neck squamous cell carcinoma (HNSCC)

– A main objective in oncology: creation of a standardized
set of criteria to predict tumor response to treatment;

– Radiomic features for characterization of HNSCC in
addition to the traditional use of imaging;

– Image analysis algorithms extract mathematically defined
features of the tumor’s appearance giving rise to
high-dimensional matrix covariates
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Radiomic features

“Radiomics: Images Are More than Pictures, They Are Data”
[Gillies et al., 2015]
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Data

– Retrospective study of 605 patients diagnosed with
primary pathology proven HNSCC with

– Tumor sites: 164 arising from oral cavity (OC), 200
oropharynx (OP), and 241 from larynx or hypopharynx
(LHP)

– Outcome: lymph node metastasis (LN) (+/-)

– An important risk factor: Human Papilloma Virus (HPV)
status (+/-)

– Covariates: smoking, drinking, T stage

– Radiomic features: 36
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Data structure and challenges

– Dimensionality of the features matrix; only a few may be
useful predictors – need efficient variable selection
techniques

– Heterogeneity among tumor sites – site-stratified variable
selection and inference

– Disproportionately large volume of missing data – variable
selection and inference while dealing with missing data
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What’s currently done

– Random Forest classifiers/Lasso: no uncertainty estimates

– Decision of which features are the “most” important
requires an arbitrary threshold

– Site-stratified analyses: not capable of borrowing
information

– Imputation of missing values in a pre-processing step:
under-representation of uncertainty
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The model

– Bayesian hierarchical model for n = 1, . . . ,N patient data,

LN︷ ︷
y1n ∼ Bernoulli(π1n),

HPV︷ ︷
y2n ∼ Bernoulli(π2n)

logit(π1n) = φπ2n + znη1 + xnβ1sn ,

logit(π2n) = znη2 + xnβ2sn ,

– sn = 1, . . . ,S are the tumor sites,

– zn are a set of covariates (drinking, smoking and T-stage
group)

– xn is the F × 1 vector of radiomic features
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A word on sparse Bayesian regression

– A useful case study by Michael Betancourt
[Betancourt, 2018]

– The direct translation of Lasso penalty to a prior (Laplace)
doesn’t quite equivalent;

– The Horseshoe prior [Carvalho et al., 2009] solves this by
introducing global and a local scale parameters,

βj ∼ N (0, τ2λ2
j ),

λj ∼ C+(0,1),

τ ∼ C+(0, τ0).

– Problem: non-zero slopes are unregularized, can result in
nonidentification or weak identification.
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The prior

– Feature selection via the regularized Horseshoe prior
[Piironen and Vehtari, 2017]

βj,sn ∼ N (0, τ2
sn λ̃

2
j,sn

), λ̃2
j,sn

=
c2λ2

j,sn

c2 + c2λ2
j,sn

,

λj,sn ∼ C
+(0,1),

c2 ∼ IG(ν
2
,
ν

2
s2),

τsn ∼ C+(0, τ0).

– Note: the subscripts sn represent the site-specific
variances for βj,sn .
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Model capabilities

– Site-specific feature selection while information is
borrowed across sites;
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Model capabilities

– The risk associated with missing HPV values are
augmented and estimated as parameters;

– Automatically incorporating prediction uncertainty
associated with missing HPV values;

– Can improve coverage by 20% according to simulation
results.
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Model capabilities

Bayesian feature selection

– The Bayesian shrinkage priors provide uncertainty
estimates for selected feature coefficients unlike their
frequentist counterparts currently used;

– The regularized Horseshoe prior achieves reliable sparse
inference.

Multiple steps unified within one hierarchical model
implemented in Stan.
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Features predictive of LN
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Features predictive of HPV
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The difference inclusion of HPV can make
Model without HPV

HPV LN with HPV in the model
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LN prediction Accuracy

The CV AUC obtained from random forest was 0.76.

S. Golchi (McGill University) Bayesian Feature Selection 15/18



HPV prediction Accuracy
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Work in progress and concluding remarks

Simulation study addressing

– To what extent the integrated inference can improve the
results over a multi-step analysis?

– What are the problem settings (dimensionality, correlation
structure, etc) that the proposed model works best within?

Main message

– Uncertainty quantification is important even when the main
objective is prediction;

– The cost is the computation, especially as the
dimensionality increases.
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