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Context and objectives

— Context: radiomic data for characterization of head and
neck squamous cell carcinoma (HNSCC)

— A main objective in oncology: creation of a standardized
set of criteria to predict tumor response to treatment;

— Radiomic features for characterization of HNSCC in
addition to the traditional use of imaging;

— Image analysis algorithms extract mathematically defined
features of the tumor’s appearance giving rise to
high-dimensional matrix covariates
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Radiomic features

“Radiomics: Images Are More than Pictures, They Are Data”
[Gillies et al., 2015]
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Data

— Retrospective study of 605 patients diagnosed with
primary pathology proven HNSCC with

— Tumor sites: 164 arising from oral cavity (OC), 200
oropharynx (OP), and 241 from larynx or hypopharynx
(LHP)

— Outcome: lymph node metastasis (LN) (+/-)

— An important risk factor: Human Papilloma Virus (HPV)
status (+/-)

— Covariates: smoking, drinking, T stage

— Radiomic features: 36
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Data structure and challenges

— Dimensionality of the features matrix; only a few may be
useful predictors — need efficient variable selection
techniques

— Heterogeneity among tumor sites — site-stratified variable
selection and inference

— Disproportionately large volume of missing data — variable
selection and inference while dealing with missing data
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What'’s currently done

Random Forest classifiers/Lasso: no uncertainty estimates

Decision of which features are the “most” important
requires an arbitrary threshold

Site-stratified analyses: not capable of borrowing
information

Imputation of missing values in a pre-processing step:
under-representation of uncertainty
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The model

— Bayesian hierarchical model for n =1,..., N patient data,

LN HPV
Y1n ~ Bernoulli(m1,), ¥2n ~ Bernoulli(mz,)

logit(71n) = ¢man + ZpN1 + XnBis,,
logit(man) = Znm + X
— sp=1,...,8 are the tumor sites,

— z, are a set of covariates (drinking, smoking and T-stage
group)
— Xp is the F x 1 vector of radiomic features
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A word on sparse Bayesian regression

— A useful case study by Michael Betancourt
[Betancourt, 2018]

— The direct translation of Lasso penalty to a prior (Laplace)
doesn’t quite equivalent;

— The Horseshoe prior [Carvalho et al., 2009] solves this by
introducing global and a local scale parameters,

g @
Aj ~ C*(0,
TNC+(O,T0).

— Problem: non-zero slopes are unregularized, can result in
nonidentification or weak identification.
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The prior

— Feature selection via the regularized Horseshoe prior
[Piironen and Vehtari, 2017]

CQAZ
o 232 N2 f,Sn
/Bj,Sn N(O’Tsn)\j,sn)? >‘j,s,7 - c2 + c2)\2
1:8n

)\anNC+(O 1),
P~ TA(5, 5 )

Ts, ~ C™T (O,To).

— Note: the subscripts s, represent the site-specific
variances for f3; s,.
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Model capabilities

— Site-specific feature selection while information is
borrowed across sites;
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Model capabilities

— The risk associated with missing HPV values are
augmented and estimated as parameters;

— Automatically incorporating prediction uncertainty
associated with missing HPV values;

— Can improve coverage by 20% according to simulation
results.
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Model capabilities

Bayesian feature selection

— The Bayesian shrinkage priors provide uncertainty
estimates for selected feature coefficients unlike their
frequentist counterparts currently used;

— The regularized Horseshoe prior achieves reliable sparse
inference.

Multiple steps unified within one hierarchical model
implemented in Stan.
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Features predictive of LN

LHC
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Features predictive of HPV
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The difference inclusion of HPV can make
Model without HPV
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LN prediction Accuracy

0.81 <AUC< 0.84
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The CV AUC obtained from random forest was 0.76.
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HPV prediction Accuracy
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Work in progress and concluding remarks

Simulation study addressing

— To what extent the integrated inference can improve the
results over a multi-step analysis?

— What are the problem settings (dimensionality, correlation
structure, etc) that the proposed model works best within?

Main message

— Uncertainty quantification is important even when the main
objective is prediction;

— The cost is the computation, especially as the
dimensionality increases.
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