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Introduction



Ising Model

Consider a sequence of binary random variables
X=(X,Xo,....%)", Xje{-1,1}fori=1,....n
If the binary random variables are dependent, which statistical

model is appropriate? Ising model.

» The Ising model, named after the physicist Ernst Ising, is a
mathematical model of ferromagnetism in statistical
mechanics.

» The model consists of binary random variables (spins).
» Each spin interacts with its neighbors.



Ising Model

Let A, is a known coupling matrix which represents the
dependency structure of X.

0 a2 -+ ain
a1 0 - a,
An = .
an,1 an,2 to 0

~)=0, if x; and x; are independent
"\ >0, if x; and x; are dependent

Common choice of A, is an adjacency matrix of a graph. In our
study, we assume A, is known.



Ising Model

Then, the likelihood of Ising model is:

1 B T &
Psg(X=X)=5——=ce =X Ax+B)» X 1
B,B( ) Zn(,B,B) Xp (2 n ; I) ()
where 5 > 0 and B # 0.

> [ tells us how strongly the dependent variables are
interacted.
> B represents overall tendency of the variables,

- If B> 0, x;’s tend to be +1,
- If B< 0, xj’s tend to be —1.

» Z,(8, B) is a normalizing constant such that

1= Zn(;7 ) Z exp (ngAnX—FBZX/)

xe{-1,1}n i=1




Pseudo-likelihood

Accurate calculation of the normalizing constant involves the
sum of 2" terms, which require high computation costs:

n
Zn(8,B) = Z exp <§XTA,7X + BZX,-)
xe{—1,1}n i—1

One can easily calculate the conditional probability of X; given
others to remove the normalizing constant:

exp (Bx;mj(x) + Bx;)
exp (Bm;(x) + B) + exp (—8mj(x) — B)

where m;(x) = [AnX]; = 27:1 ajj - X



Pseudo-likelihood

In this regard, we consider a pseudo-likelihood as the product
of the conditional probabilities as follows:

n
Psp(X =x) =T P(Xi = x| X;,j # i)
i=1

=277 exp (i [Xivi(ﬁa B) - |Og cosh (Vi(ﬁv B))]>
i=1
(2)

where v;(8, B) = Smj(x) + B. We will replace the true likelihood
(1) with the pseudo-likelihood (2) in our estimation procedure.



Bayesian Methodology



Prior Distribution

We want to estimate the parameters (3, B) in Bayesian
framework. 0 := (3, B) is viewed as a random vector with prior
distribution:

p(0) = ps(8)ps(B)

We choose normal prior for B.

L
PB(B):Ee 2



Prior Distribution

We choose log-normal prior for g because it should be positive.

1 ep?
ps(B) = We

Therefore,




Posterior Distribution

With the pseudo-likelihood (2) and prior distributions, we define
a (pseudo) posterior as follows:

po.x) _ p(0.x)
B~ TR0, X)do

where p(0, x) = p(6)Ps(X = x). The integral in denominator is
intractable.

(0 | x) = (3)



Variational Bayes

Instead, we use Variational Bayes (VB) to approximate the
posterior (3).
1. Choose a family of distributions Q, so-called variational
family.
2. Find the optimal variational distribution g* € Q which is
closest to (¢ | x) in terms of Kullback-Leibler (KL)
divergence.

q" = argmin dk (g, 7(0 | X))
geQ



Variational Bayes

Note that

i (9, 7(0 | X)) = Eq [log q(0) — log p(6, X)] — log p(x). ~ (4)

The first term in (4) is negative Evidence Lower BOund (ELBO).
We want to find optimal g* among predetermined Q which
minimizes the negative ELBO:

q" = argmin d. (g, 7(0 | X))
qeQ
= arg m|n Eq [log q(0) — log p(6, X)]
negauve ELBO




Variational Family

One candidate of our variational family is mean-field family as

follows:
oM = {q(0) : q(0) = q5(8)qs(B)}
where
’ _('ogﬁ—zuﬁ)z
qs(8) = Goaor® SCEN
1
9s(B) = =

Note that g(9) € QYF is characterized by four variational
parameters (n3, 04, B, 08)-



Variational Family

Consider log transformation of g such that
z:=(21,2)" = (log 8,B)". Then, another option of variational

family is bivariate normal (BN) family with z:
QBN = [q(2) : q(z) = (2n) ' det(x) /2 3z 1) = (z-m))

where o = (1, 12) " and X = (J, %2). Note that q(z) € QBN is
characterized by five variational parameters (w1, o1, 12, 02, 012).



Stochastic Gradient Method

Let w denote the set of variational parameters. As a function of
w, we want to optimize the negative ELBO denoted by £(w). In
other words, we want to find w* such tat

q(0; w*) = arg min Eq [log q(0; w) — log p(, x)]
qeQ

= argmin L(w)
qeQ

We iteratively update w until the negative ELBO converges as
follows :

W) (O otV L

where VL is the gradient of £(w) and p; is learning rate.



Stochastic Gradient Method

From Ranganath et al. [2014], the gradient VL is:

VoL =Eq[Vylogq(8;w) (log q(0; w) — log p(0, X))]
S
~ £ Vlog(fsi) (105 q(6s; ) — log p(fs X)) = VL

s=1

where 05 ~ g(6; w(®). We use V,,Z in substitute for V,,£ when
updating w:

WD O — 5, L



Summary of Algorithm
» Parameters of interest: 6 = (3, B)
» Given data: x ~ P3 g(x)
» Assumption: A, is known
> Input:

- Variational family: QMF or QBN
- Corresponding initial variational parameters: w(©

» Output: optimal variational parameters w* obtained by

—

WD WO _ 5V L t=1,2,. ..

» Estimate:
L 1M
B=4; 2" Bm Om=(Bm Bm) ~ q(6;w")
m=1
. 1M
B= i Z B,

3
I}



Simulation Study



Simulation

To assess applicability of the proposed method, we perform
numerical studies as follows:

1. First, we determined the dependency structure of x using
an adjacency matrix of a d-regular graph as the known
coupling matrix Ap.

2. Then, we generated x from true likelihood (1) with true
parameters 6y = (5o, By).

3. Given x, we implemented our algorithm to get § = (5, B).

4. We repeated the steps 2 and 3 50 times. Then, we have:

A A

01,02, ..., 0.



Simulation

» The measurement of performances is mean squared error
(MSE):

~ En ((ﬁr - 90)2 + (Br - BO)Q)
p

» We compare our method and Pseduo-MLE in Ghosal et al.
[2020]



Performance Comparison

Simulation setup:
1. (Bo, Bp) = (0.2,+0.2) and n = 500

Degree of Method Sample MSE Convergence
graph (d) size (S) time (sec)
10 PMLE - 0.051/0.022 3.3

MF family 200 0.060/0.031 60.0
2000 0.052/0.021 245.9
BN family 200 0.047/0.019 68.0
2000 0.045/0.016 251.2
50 PMLE - 0.101/0.163 3.6
MF family 200 0.079/0.161 60.2
2000 0.072/0.107 246.6
BN family 200 0.065/0.148 68.1
2000 0.090/0.143 250.8



Performance Comparison

2. (B, Bo) = (0.7,£0.5) and n = 500

Degree of Method Sample MSE Convergence
graph (d) size (S) time (sec)
10 PMLE - 0.232/0.261 3.3

MF family 200 0.150/0.146 60.2
2000 0.151/0.132 246.2
BN family 200 0.144/0.136 68.1
2000 0.140/0.133 250.5
50 PMLE - 0.765/1.216 3.5
MF family 200 0.162/0.254 61.0
2000 0.197/0.157 246.2
BN family 200 0.138/0.194 68.0
2000 0.107/0.135 249.9



Performance Comparison

3. (Bo, By) = (1.2,40.5) and n = 500

Degree of Method Sample MSE Convergence
graph (d) size (S) time (sec)
10 PMLE - 1.483/1.598 3.2

MF family 200 0.627/0.737 60.4
2000 0.700/0.814 246.1
BN family 200 0.488/0.479 67.8
2000 0.411/0.499 250.2
50 PMLE - 3.190/3.526 3.3
MF family 200 0.836/0.792 60.5
2000 0.972/0.947 245.5
BN family 200 0.336/0.294 68.1
2000 0.272/0.208 250.2



Future Work

Theorem (Posterior Consistency)

Consider a neighborhood U. = {|5 — po| < €,|B— By| < ¢}. Let
q* is the optimal variational distribution obtained by the VB
algorithm with mean-field family. Then,

qg'Uf) -0, >0
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