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Introduction
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Ising Model

Consider a sequence of binary random variables

X = (X1,X2, . . . ,Xn)>, Xi ∈ {−1,1} for i = 1, . . . ,n

If the binary random variables are dependent, which statistical
model is appropriate? Ising model.
I The Ising model, named after the physicist Ernst Ising, is a

mathematical model of ferromagnetism in statistical
mechanics.

I The model consists of binary random variables (spins).
I Each spin interacts with its neighbors.



4/26

Ising Model

Let An is a known coupling matrix which represents the
dependency structure of X .

An =


0 a1,2 · · · a1,n

a2,1 0 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · 0


ai,j

{
= 0, if xi and xj are independent
> 0, if xi and xj are dependent

Common choice of An is an adjacency matrix of a graph. In our
study, we assume An is known.
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Ising Model
Then, the likelihood of Ising model is:

Pβ,B(X = x) =
1

Zn(β,B)
exp

(
β

2
x>Anx + B

n∑
i=1

xi

)
(1)

where β > 0 and B 6= 0.
I β tells us how strongly the dependent variables are

interacted.
I B represents overall tendency of the variables,

- If B > 0, xi ’s tend to be +1,
- If B < 0, xi ’s tend to be −1.

I Zn(β,B) is a normalizing constant such that

1 =
1

Zn(β,B)

∑
x∈{−1,1}n

exp

(
β

2
x>Anx + B

n∑
i=1

xi

)
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Pseudo-likelihood

Accurate calculation of the normalizing constant involves the
sum of 2n terms, which require high computation costs:

Zn(β,B) =
∑

x∈{−1,1}n

exp

(
β

2
x>Anx + B

n∑
i=1

xi

)

One can easily calculate the conditional probability of Xi given
others to remove the normalizing constant:

P(Xi = xi | Xj , j 6= i) =
exp (βximi(x) + Bxi)

exp (βmi(x) + B) + exp (−βmi(x)− B)

where mi(x) = [Anx ]i =
∑n

j=1 ai,j · xj
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Pseudo-likelihood

In this regard, we consider a pseudo-likelihood as the product
of the conditional probabilities as follows:

P̃β,B(X = x) =
n∏

i=1

P(Xi = xi | Xj , j 6= i)

= 2−n exp

(
n∑

i=1

[xivi(β,B)− log cosh (vi(β,B))]

)
(2)

where vi(β,B) = βmi(x) + B. We will replace the true likelihood
(1) with the pseudo-likelihood (2) in our estimation procedure.
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Bayesian Methodology
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Prior Distribution

We want to estimate the parameters (β,B) in Bayesian
framework. θ := (β,B) is viewed as a random vector with prior
distribution:

p(θ) = pβ(β)pB(B)

We choose normal prior for B.

pB(B) =
1√
2π

e−
B2
2
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Prior Distribution

We choose log-normal prior for β because it should be positive.

pβ(β) =
1

β
√

2π
e−

(log β)2

2

Therefore,

p(θ) =
1

β
√

2π
e−

(log β)2

2
1√
2π

e−
B2
2
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Posterior Distribution

With the pseudo-likelihood (2) and prior distributions, we define
a (pseudo) posterior as follows:

π̃(θ | x) =
p̃(θ,x)

p̃(x)
=

p̃(θ,x)∫
p̃(θ,x)dθ

(3)

where p̃(θ,x) = p(θ)P̃θ(X = x). The integral in denominator is
intractable.
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Variational Bayes

Instead, we use Variational Bayes (VB) to approximate the
posterior (3).

1. Choose a family of distributions Q, so-called variational
family.

2. Find the optimal variational distribution q∗ ∈ Q which is
closest to π̃(θ | x) in terms of Kullback-Leibler (KL)
divergence.

q∗ = arg min
q∈Q

dKL (q, π̃(θ | x))
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Variational Bayes

Note that

dKL (q, π̃(θ | x)) = Eq [log q(θ)− log p̃(θ,x)]− log p̃(x). (4)

The first term in (4) is negative Evidence Lower BOund (ELBO).
We want to find optimal q∗ among predetermined Q which
minimizes the negative ELBO:

q∗ = arg min
q∈Q

dKL (q, π̃(θ | x))

= arg min
q∈Q

Eq [log q(θ)− log p̃(θ,x)]︸ ︷︷ ︸
negative ELBO
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Variational Family

One candidate of our variational family is mean-field family as
follows:

QMF = {q(θ) : q(θ) = qβ(β)qB(B)}

where

qβ(β) =
1

βσβ
√

2π
e
−

(log β−µβ )2

2σ2
β ,

qB(B) =
1

σB
√

2π
e
− (B−µB )2

2σ2
B .

Note that q(θ) ∈ QMF is characterized by four variational
parameters (µβ, σβ, µB, σB).
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Variational Family

Consider log transformation of β such that
z := (z1, z2)> = (log β,B)>. Then, another option of variational
family is bivariate normal (BN) family with z :

QBN = {q(z) : q(z) = (2π)−1det(Σ)−1/2e−
1
2 (z−µ)>Σ−1(z−µ)}

where µ = (µ1, µ2)> and Σ = ( σ1 σ12
σ12 σ2 ). Note that q(z) ∈ QBN is

characterized by five variational parameters (µ1, σ1, µ2, σ2, σ12).
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Stochastic Gradient Method

Let ω denote the set of variational parameters. As a function of
ω, we want to optimize the negative ELBO denoted by L(ω). In
other words, we want to find ω∗ such tat

q(θ;ω∗) = arg min
q∈Q

Eq [log q(θ;ω)− log p(θ,x)]

= arg min
q∈Q

L(ω)

We iteratively update ω until the negative ELBO converges as
follows :

ω(t+1) ← ω(t) − ρt∇ωL

where ∇ωL is the gradient of L(ω) and ρt is learning rate.
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Stochastic Gradient Method

From Ranganath et al. [2014], the gradient ∇ωL is:

∇ωL = Eq [∇ω log q(θ;ω) (log q(θ;ω)− log p(θ,x))]

' 1
S

S∑
s=1

∇ω log q(θs;ω) (log q(θs;ω)− log p(θs,x)) := ∇̂ωL

where θs ∼ q(θ;ω(t)). We use ∇̂ωL in substitute for ∇ωL when
updating ω:

ω(t+1) ← ω(t) − ρt∇̂ωL
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Summary of Algorithm
I Parameters of interest: θ = (β,B)

I Given data: x ∼ Pβ,B(x)

I Assumption: An is known
I Input:

- Variational family: QMF or QBN

- Corresponding initial variational parameters: ω(0)

I Output: optimal variational parameters ω∗ obtained by

ω(t+1) ← ω(t) − ρt∇̂ωL, t = 1,2, . . .

I Estimate:

β̂ =
1
M

M∑
m=1

βm, θm = (βm,Bm) ∼ q(θ;ω∗)

B̂ =
1
M

M∑
m=1

Bm
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Simulation Study
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Simulation

To assess applicability of the proposed method, we perform
numerical studies as follows:

1. First, we determined the dependency structure of x using
an adjacency matrix of a d-regular graph as the known
coupling matrix An.

2. Then, we generated x from true likelihood (1) with true
parameters θ0 = (β0,B0).

3. Given x , we implemented our algorithm to get θ̂ = (β̂, B̂).
4. We repeated the steps 2 and 3 50 times. Then, we have:

θ̂1, θ̂2, . . . , θ̂50.
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Simulation

I The measurement of performances is mean squared error
(MSE):

MSE(θ̂) =
1

50

50∑
r=1

(θ̂r − θ0)2

=
1

50

50∑
r=1

(
(β̂r − θ0)2 + (B̂r − B0)2

)
I We compare our method and Pseduo-MLE in Ghosal et al.

[2020]
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Performance Comparison

Simulation setup:
1. (β0,B0) = (0.2,±0.2) and n = 500

Degree of Method Sample MSE Convergence
graph (d) size (S) time (sec)

10 PMLE - 0.051 / 0.022 3.3
MF family 200 0.060 / 0.031 60.0

2000 0.052 / 0.021 245.9
BN family 200 0.047 / 0.019 68.0

2000 0.045 / 0.016 251.2
50 PMLE - 0.101 / 0.163 3.6

MF family 200 0.079 / 0.161 60.2
2000 0.072 / 0.107 246.6

BN family 200 0.065 / 0.148 68.1
2000 0.090 / 0.143 250.8
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Performance Comparison

2. (β0,B0) = (0.7,±0.5) and n = 500

Degree of Method Sample MSE Convergence
graph (d) size (S) time (sec)

10 PMLE - 0.232 / 0.261 3.3
MF family 200 0.150 /0.146 60.2

2000 0.151 / 0.132 246.2
BN family 200 0.144 / 0.136 68.1

2000 0.140 / 0.133 250.5
50 PMLE - 0.765 / 1.216 3.5

MF family 200 0.162 / 0.254 61.0
2000 0.197 / 0.157 246.2

BN family 200 0.138 / 0.194 68.0
2000 0.107 / 0.135 249.9
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Performance Comparison

3. (β0,B0) = (1.2,±0.5) and n = 500

Degree of Method Sample MSE Convergence
graph (d) size (S) time (sec)

10 PMLE - 1.483 / 1.598 3.2
MF family 200 0.627 / 0.737 60.4

2000 0.700 / 0.814 246.1
BN family 200 0.488 / 0.479 67.8

2000 0.411 / 0.499 250.2
50 PMLE - 3.190 / 3.526 3.3

MF family 200 0.836 / 0.792 60.5
2000 0.972 / 0.947 245.5

BN family 200 0.336 / 0.294 68.1
2000 0.272 / 0.208 250.2
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Future Work

Theorem (Posterior Consistency)
Consider a neighborhood Uε = {|β − β0| < ε, |B −B0| < ε}. Let
q∗ is the optimal variational distribution obtained by the VB
algorithm with mean-field family. Then,

q∗(Uc
ε )→ 0, ε > 0
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