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I will talk about

Ø First Order Bifurcating Autoregressive Model
Ø Least Squares Estimation
Ø The Problem and the Goal
Ø Bias of the Least Squares Estimators 
Ø The Bootstrap Bias Correction Methods 
ØThe impact of Bias Correction on CI (Simulation Results)
Ø Conclusions
Ø About This Work



First Order Bifurcating Autoregressive (BAR(1)) Model
BAR(1) Model is an adaptation of traditional first order autoregressive (AR(1)) model 
to binary tree structured data, where each individual observation in any generation 
gives rise to two offspring in the next generation.
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First Order Bifurcating Autoregressive (BAR(1)) Model

Ø Cowan and Staudte (1986) proposed the first-order BAR (1) model 
for cell lineage data and introduce the Maximum likelihood estimation 
under normality assumption.

Ø It is important to quantify inherited and environmental effects to 
explain the progression of the quantitative characteristic of the cells 
(cell lifetime or cell volume at the time of division).



The BAR (1) Model

The traditional AR(1) model is given by 

𝑋! = 𝜙" + 𝜙#𝑋!$# + 𝜀! , for all t ≥ 2

where,
• 𝑋! is the observed value at time 𝑡. 
• 𝑋!$# is the observed value at time (𝑡-1).
• 𝜙" and 𝜙#are the parameters that needs to be estimated, where 𝜙" is the 

intercept and 𝜙# denotes the autoregressive parameter.



The BAR (1) Model

The BAR(1) model is given by 

𝑋! = 𝜙" + 𝜙#𝑋 !
%
+ 𝜀! , for all t ≥ 2

where
• 𝑋! is an observed value at time 𝑡. 
• 𝑋 !

"
is the mother of 𝑋! for all 𝑡 ≥ 1, where 𝑢 defines the largest integer ≤ 𝑢.

• 𝜙" and 𝜙# are the parameters that need to be estimated, where 𝜙# denotes the 
maternal correlation or the inherited effect.



The BAR (1) Model

The BAR(1) model can be written

𝑋%! = 𝜙" + 𝜙#𝑋! + 𝜀%! ,
𝑋%!&# = 𝜙" + 𝜙#𝑋! + 𝜀%!&#, for all t ≥ 1

where,
• 𝑋%! and 𝑋%!&# are an observed sister cells lifetime at time 𝑡. 
• 𝑋! denotes the mother of 𝑋! for all 𝑡 ≥ 1.
• 𝜙" 𝑎𝑛𝑑 𝜙#are the parameters that needs to be estimated, where 𝜙" is the 

intercept and 𝜙# denotes the maternal correlation or the inherited effect.
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The BAR (1) Model

• 𝜀!", 𝜀!"#$ , t ≥ 1 are independently and identically distributed (iid) bivariate 
random variables with mean zero and a variance–covariance structure,

1 𝜃
𝜃 1 𝜎!,

where,
• 𝜃 is the correlation between 𝜀!", 𝜀!"#$ or the environmental effect.
• 𝜎! is the variance of 𝜀!" and 𝜀!"#$.
• It is assumed that 𝜙" ∈ −1, 1 , 𝑡 = 1, . . , 𝑝. This implies the process is stationary.
• The correlation coefficient between the sisters 𝑋!", 𝑋!"#$ is defined as 𝜌 and it 

is given by
𝜌 = 𝜙$! + 1 − 𝜙$! 𝜃.



The idea came from

Zhou and Basawa (2005) “Least-squares estimation for bifurcating 
autoregressive processes” Statistics and Probability Letters, Volume 74(1), 
77-88.
Ø They introduced the least squares estimates for the BAR(p) models 

including the BAR(1) model and derived the asymptotic distribution for the 
LS estimators.

Ø They did not investigate the finite sample properties of these estimators. 



Least Squares Estimation
The LS estimators of BAR(1) are given by

!𝜙! =
∑"#!$ 𝑋" 𝑈" − (𝑈"
∑"#!$ 𝑋" − )𝑋 % , !𝜙& = (𝑈" − !𝜙! )𝑋,

𝑈" =
'!"('!"#$

%
, )𝑋 = !

$
∑"#!$ 𝑋" , (𝑈" =

!
$
∑"#!$ 𝑈" , 𝑚 = )*!

%
,

and 𝑚 the number of triplets (𝑋", 𝑋%" , 𝑋%"(!).

where,



Least Squares Estimation
When substituting 𝑈" in the !𝜙! and !𝜙& equations, it gives the common 
LS equations of the autoregressive process of order one

!𝜙! =
∑"#!) 𝑋" 𝑋 "

%
− )𝑋"

∑"#!) 𝑋" − )𝑋" %

)𝑋" =
1
𝑛
.
"#!

)

)𝑋" .

!𝜙& = 1 − !𝜙! )𝑋"

where,



The Problem

• Although the LS estimators of the BAR model coefficients are 
asymptotically unbiased, this study shows that the finite sample bias of 
these estimators can be quite large, which might make inferences 
based on these estimators to be inaccurate.

• This should not be surprising as it is well-known that the LS 
estimators for the AR(1) model tend to have significant biases, 
especially when the autoregressive parameter is close to the 
boundaries (see Hurwicz (1950)).



Ø Study the bias of LS estimates for BAR(1).

Ø Propose a bias correction method for the LS estimators of the 
BAR(1) model.

Ø Study the Confidence Interval coverage before and after bias 
correction.

The Goal



Bias of the Least Squares Estimators 

Ø Monte Carlo Study is used for demonstrating empirically the bias of the LS 
estimator of the BAR(1) autoregressive coefficient 𝜙$. 

Ø The Monte Carlo Setting:
• Perfect binary trees of size n = 31, 63, 127, 255 (accounting for varying number 

of generations; g = 4, 5, 6, 7, respectively)
• Combination of 𝜙$ = ±0.15(±0.15) ± 0.90 and  𝜃 = ±0.15(±0.15) ± 0.90 
• The model intercept 𝜙$ = 10 
• All generated trees are assumed stationary
• The initial observation in the tree, 𝑋$, is randomly selected from a large simulated 

binary tree of size 127 
• Under each of these settings, 𝑁 = 50,000 trees are generated and the LS estimator 
𝜙$%& is obtained for each tree



Bias of the Least Squares Estimators 

• The empirical bias and absolute relative bias (ARB) of 𝜙!+, are 
calculated as follows: 

where, 𝜙!
-.,(1) is the LS estimator from iteration 𝑗 = 1,2, … , 𝑁.



Bias of the Least Squares Estimators 
The Monte Carlo results are summarized in the following graphs



Bias of the Least Squares Estimators 

Comments on the results:
• The bias of 𝜙!+, can be quite significant for many combinations of 
𝜙!and 𝜃, especially for small sample sizes. 
• the magnitude of bias is considerable when 𝜃 is positive and 𝜙! is 

larger than -0.45. 
• In general, it is clear that 𝜙!+, tends to slightly overestimate large 

negative value of 𝜙! < -0.45 and underestimates all values of 𝜙! with 
the magnitude of overestimation increasing as we move towards +1.
• the bias appears to be linear in 𝜙! over the major part of its domain.



Bias of the Least Squares Estimators 



Bias of the Least Squares Estimators 

Comments on the results:
• In general, the pattern of relative bias is the same for all 𝜙! and 𝜃

combinations but with different relative bias levels. The relative bias 
level increases as the value of 𝜃 goes from the -1 to +1.
• Also, the relative bias decreases as the sample size increases. 
• The relative bias continues to be considerably large for values of 𝜙!

that are larger than -0.30 as long as remains 𝜃 away from +1.
• For small sample sizes (n = 31) and when 𝜙! is near zero (-0.15 to 

0.15), the bias of 𝜙!+, can be as large as 5% to 60% (as moves from -1 
to +1) of the true value of 𝜙!. 



Bias-Correction Methods for the LS Estimators 
Two Methods:
Elbayoumi and Mostafa (2020), showed that the following two methods 
for correcting the bias of the LS estimates for the BAR(1) model:
1. Bootstrap Bias Correction

• Single Bootstrap
• Fast Double Bootstrap

2. Bias Correction with Linear Bias Function 



The Bootstrap Bias Correction Methods
Single Bootstrap Bias Correction Algorithm
Given the original sample 𝑋"', compute the LS estimates 2𝜙( and 2𝜙$, and the estimated 
errors �̂�!" and �̂�!"#$ for all 𝑡 ≥ 1. From the estimated errors, draw 𝐵 bootstrap samples 
each of size 𝑚 = (𝑛 − 1)/2 by sampling with replacement from among the pairs 
�̂�!", �̂�!"#$ and form 𝑋"'∗, 𝑏 = 1,… , 𝐵 by

𝑋!",+'∗ = 2𝜙(%& + 2𝜙$%&𝑋"' + �̂�!",+, and  𝑋!"#$,+'∗ = 2𝜙(%& + 2𝜙$%&𝑋"' + �̂�!"#$,+

The initial value 𝑋$∗ = 𝑋$ in all trees. Next, for each bootstrap binary tree sample, compute 
the 2𝜙$,+∗ , 𝑏 = 1,… , 𝐵 . Then, obtain the estimated bias 𝛽,-!as,

B𝛽,-!"# =
1
𝐵
C
+.$

/

2𝜙$,+∗ − 2𝜙$%& .

Finally, The bootstrap bias corrected LS estimator is 2𝜙$&/0 = 2𝜙$%& − B𝛽,-!"# .



The Bootstrap Bias Correction Methods
Fast Double Bootstrap Bias Correction Algorithm
Given the original sample 𝑋#$, apply the single bootstrap algorithm to generate 𝐵% bootstrap replicates 
of the tree, 𝑋#$∗, 𝑏 = 1,… , 𝐵%. Using the LS estimates (𝜙'∗ , (𝜙%∗ and the errors (�̂�(#∗ , �̂�(#)%∗ ) computed 
from each of 𝐵% the bootstrap samples 𝑋#$∗, draw 𝐵( = 1 bootstrap sample by sampling with 
replacement 𝑚 pairs errors and forming 𝑋#$∗∗ as follows

𝑋(#,+$∗∗ = (𝜙'∗ + (𝜙%∗𝑋#∗ + �̂�(#,+∗∗ , and  𝑋(#)%,+$∗∗ = (𝜙'∗ + (𝜙%∗𝑋#∗ + �̂�(#)%,+∗∗

We keep the initial value 𝑋%∗∗$ = 𝑋%$∗in all second phase trees. Next, for each second phase bootstrap 
samples, compute (𝜙%,+∗∗ . This results in two series of bootstrap iterates 3𝜙!,#∗ and (𝜙%,+∗∗ , for 𝑏 = 1,… , 𝐵%. 
Define the Monte Carlo estimate of the second phase bias adjustment factor 𝛾,-!

./ as,

𝛾,-!
./ = 5𝛽%&!"# −

1
𝐵%
1
+0%

1!
(𝜙%,+∗∗ − D𝜙$,+∗

Finally, The fast double bootstrap bias corrected LS estimator is 3𝜙!'()* = 3𝜙!+, − 5𝛽%&!"# − 𝛾,-!
./ , where 

B𝛽,-!"# is the estimated bias from the single bootstrap bias correction algorithm .



The Bootstrap Bias Correction Methods
Bias Correction with Linear Bias Function 

Theorem: Consider the stationary BAR(1) model (i.e.,| 𝜙! |<1) and suppose the model errors have finite 
fourth-order moments (i.e ., E(𝜀-.) < ∞ ∀t). Then, the bias of the LS estimator 𝜙!/0 is given by 

𝐸 𝜙!/0 − 𝜙! = −
1
𝑛
1 + 𝜃 1 + 3𝜙! + 𝑂 𝑛12 .

Therefore, the corrected LS estimator for the autoregressive parameter 𝜙! is 

3𝜙!+)* =
1

𝑛 − 3(1 + 5𝜃)
𝑛 3𝜙!+, + (1 + 5𝜃) ,

where, 5𝜃 = !
345$

∑-6!3 �̂�2-�̂�2-7! and F𝜎2 = !
(91:)

∑-6!9 �̂�2.

The proof of this theorem can be found on Page 4 of  Elbayoumi T. M. and Mostafa S. A. (2020), On the 
Estimation Bias in First-Order Bifurcating Autoregressive Models, Stat Journal., 17;00:1-6. 
https://doi.org/10.1002/sta4.342

https://doi.org/10.1002/sta4.342


The Bias Correction methods

• All proposed bias-correcting estimators reduce the bias of the LS 
estimator for nearly all combinations of 𝜙! and 𝜃 even when the 
sample size is small.
• The success of the linear-bias-correction method in reducing the bias 

is not surprising since the bias of the LS estimator is indeed, 
approximately, linear as a function of 𝜙!.
• While both the single and fast double bootstrap bias-corrected 

estimators, produce significance reductions in the bias, the fast 
double bootstrap estimator has better performance than the single 
bootstrap estimator for small samples.
• For moderate to large samples, both methods perform similarly.



The Bias Correction methods

• The bootstrap estimators have better performance for values of 𝜙!
near the boundaries (-1,+1). 
• There is no clear winner among the two methods for values of 𝜙!

that are away from the boundaries.
• The large bias improvement observed for the corrected estimator 

comes, in some cases, at the cost of increasing the RMSE compared 
to the LS estimator for small samples.



The impact of Bias Correction on CI

• The asymptotic normal CI using the variance formula, 2𝜙$%& ± 𝑧1 se 2𝜙$%&

• the asymptotic normal CI using bootstrap standard deviation, 2𝜙$%& ± 𝑧1 𝑠𝑒+22"
• the  percentile CI, 2𝜙$(14)∗ , 2𝜙$( $61 4)

∗

• the asymptotic CI based on single bootstrap bias correction, 2𝜙$&/0 ± 𝑧1 se 2𝜙$&/0

• the asymptotic CI based on fast double bootstrap bias correction, 2𝜙$78/0 ±
𝑧1 se 2𝜙$78/0

• the  percentile CI based on single bootstrap, 2𝜙$(14)
&/0 , 2𝜙$( $61 4)

&/0

• the  percentile CI based on fast double bootstrap, 2𝜙$(14)
78/0 , 2𝜙$( $61 4)

78/0

• the Bias Corrected and accelerated CI, 2𝜙$(1!)
∗ , 2𝜙$(1$)

∗ , where 𝛼$ = Φ 2�̂�( + 𝑧1 , 𝛼! =

Φ 2�̂�( + 𝑧$61 , and �̂�( = Φ6$ $
4
∑+.$4 𝐼 2𝜙$+∗ < 2𝜙$%& .



The impact of Bias Correction on CI
Monte Carlo Study: 
The simulation experiments are designed to: 
1. evaluate the coverage of several confidence intervals before and after bias correction of the LS 

estimator of the autoregressive coefficient in the BAR(1) model
2. compare the performance of proposed bias correction methods on the confidence intervals 

converge 
Simulation Settings
• Under each of these settings, 𝑁 = 500 trees are generated and the LS estimator 𝜙%./ is obtained for 

each tree.
• Five confidence interval for the coefficient 𝜙% are obtained. Namely, the asymptotic normal CI 

using the variance formula, the asymptotic normal CI using bootstrap standard deviation, the  
percentile CI, the asymptotic CI based on single bootstrap bias correction, the asymptotic CI 
based on fast double bootstrap bias correction, the  percentile CI based on single bootstrap, the  
percentile CI based on fast double bootstrap, and the Bias Corrected percentile CI.

• In both single bootstrap and fast double bootstrap methods, the number of resamples is 𝐵 = 199. 
• For each estimated CI, the nominal CI coverage is 95%.



The impact of Bias Correction on CI
Simulation Results: 

The coverage, width, symmetry of CIs of 𝜙" at 𝜃 = −0.9 and n = 63. 



The impact of Bias Correction on CI
Simulation Results: 

The coverage, width, symmetry of CIs of 𝜙" at 𝜃 = −0.6 and n = 63. 



The impact of Bias Correction on CI
Simulation Results: 

The coverage, width, symmetry of CIs of 𝜙" at 𝜃 = −0.3 and n = 63. 



The impact of Bias Correction on CI
Simulation Results: 

The coverage, width, symmetry of CIs of 𝜙" at 𝜃 = 0.3 and n = 63. 



The impact of Bias Correction on CI
Simulation Results: 

The coverage, width, symmetry of CIs of 𝜙" at 𝜃 = 0.6 and n = 63. 



The impact of Bias Correction on CI
Simulation Results: 

The coverage, width, symmetry of CIs of 𝜙" at 𝜃 = 0.9 and n = 63. 



The impact of Bias Correction on CI
• The asymptotic normal CI using the variance formula of Zhue and Basawa

(2005) has a large coverage (100%) for all 𝜙! and 𝜃 is negative. The 
coverage is less than 100% but still above the 95% when 𝜃 moves to +1 
and the coverage drops  to less than 95% significantly when the bias gets 
its highest level when 𝜙!and 𝜃 are close to +1.
• There is no winner CI method when for all values of 𝜙!and 𝜃 is negative 

except when 𝜙!> 0 and 𝜃 = −0.3.
• When the bias gets its higher levels for each value of 𝜃 and 𝜙!> 0, the 

asymptotic CIs based on single bootstrap bias correction and based on 
fast double bootstrap bias correction converges still robust against the 
bias.



Conclusions

The above results suggest that
Ø Either the single or fast double bootstrap bias correction estimators 

are recommended for correcting the LS estimation bias for the 
BAR(1) model.

Ø If the practitioner is concerned with the computational cost 
associated with the bootstrap estimators, the linear bias correcting 
estimator  can serve as a good alternative that can significantly reduce 
the bias. 

Ø It is recommended to use the asymptotic CIs based on single 
bootstrap bias correction and based on fast double bootstrap bias 
correction.



About This Work
Ø This work can be extended to the higher order BAR models. For more details please see 

(Elbayoumi T. M. and Mostafa S. A. (2021), On the Estimation Bias in First-Order 
Bifurcating Autoregressive Models, Stat Journal., 17;00:16.
https://doi.org/10.1002/sta4.342)

https://doi.org/10.1002/sta4.342


About This Work
The authors of this article 
created R Package. The package 
name is bifurcatingr. It can be 
download from CRAN (The 
Comprehensive R Archive 
Network).
https://cran.r-
project.org/web/packages/bif
urcatingr/index.html

https://cran.r-project.org/web/packages/bifurcatingr/index.html


About This Work
> library(bifurcatingr)

> z<-bfa.tree.gen(31,1,1,1,0.5,0.5,0,10,c(0.7))

> bfa.tree.plot(z)

> bfa.scatterplot(z,1)



About This Work
bfa.tree.plot(z, shape = "circle", vertex.color="gold")



About This Work
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About This Work



In Progress
Ø A continuation of this work, the 

bifurcatingr package will be updated 
and we will add to it the Confidence 
Intervals methods.
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