Method

Illustration

The case of Check-All-That-Apply data

Conclusion

Cluster analysis in a multi-block setting

Fabien Llobell, El Mostafa Qannari

fllobell@xlstat.com

Introduction	Method	Illustration	The case of Check-All-That-Apply data
●00000000	00000000	000000	

Method

Illustration

The case of Check-All-That-Apply data

Illustration Discussion: Benefits over the standard method

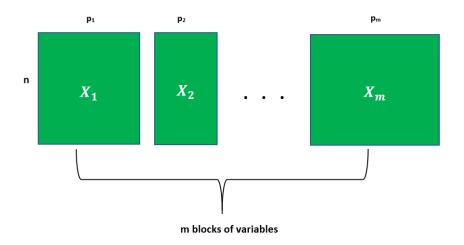
Conclusion

Introduction Method

The case of Check-All-That-Apply data

Conclusion

Data structure



Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

When do we have this structure?

• When there are measurements of different types. Examples: measurements on the vegetation of a country, its wealth, the health of residents...

 \implies One block by measurement type.

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

When do we have this structure?

• When there is a repetition of measurements. Example: the weather of each day.

 \Longrightarrow One block by day.

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

When do we have this structure?

• When measurements are made by different people. Example: sensory data: each participant gives their opinion on their perception of the products.

 \implies One block by participant.

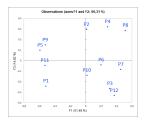
Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Existing exploratory analysis of multi-block data Aim: Build a map of observations. Some of the proposed methods:

- STATIS
- Generalized Procrustes Analysis
- Multiple Factor Analysis



Lavit, C., Escoufier, Y., Sabatier, R., & Traissac, P. (1994) Gower, J. C. (1975) Pagès, J. (2005)

Method 000000000 Illustration

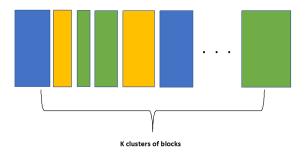
The case of Check-All-That-Apply data

Conclusion

Existing exploratory analysis of multi-block data

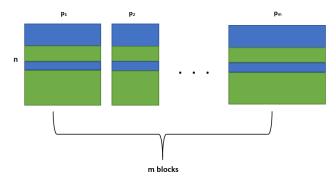
Aim: Cluster analysis of the blocks:

CLUSTATIS



Llobell, F., & Qannari, E. M. (2020)

Cluster analysis of the observations by taking account the multi-block structure:



Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Existing method

Niang and Ouattara (2019) proposed to use a consensus clustering technique which consist in:

- Perform a clustering of observations within each block
- Choose of a partition in each block
- Set up a consensus partition (by STATIS method)

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Drawbacks of such a clustering strategy

- Choosing the number of clusters in each *m* block (if *m* is large this can be problematic and time consuming)
- Computation time: *m* clustering algorithms + 1 algorithm to find the consensus

 \Longrightarrow We propose a clustering method directly based on the blocks of variables.

000000000 0000000 000000 000000 000000 000000 000000	Introduction 0000000000	Method ●○○○○○○○○	Illustration 000000		Conclusion oo
---	----------------------------	---------------------	------------------------	--	------------------

Method

Illustration

The case of Check-All-That-Apply data

Illustration Discussion: Benefits over the standard method

Conclusion

Preprocessing

- If within a block there are variables on different scales, it is better to standardize the variables of the block.
- Set all the blocks on an equal footing: Standardize each block by dividing it by its Frobenius norm: $X_l = \frac{X_l}{||X_l||} = \frac{X_l}{\sqrt{trace(X_l X_l^{\top})}}$

Method 00000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Minimization criterion

$$D_{K} = \sum_{k=1}^{K} \sum_{l=1}^{m} \sum_{i \in G_{k}} ||x_{il} - c_{l}^{(k)}||^{2}$$

 x_{ii} : Observation *i* in block *l* $c_l^{(k)}$: Centroid of cluster G_k in block *l* K: Number of clusters

Method 00000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Hierarchical algorithm

 \longrightarrow First step: Each observation is a cluster.

 \longrightarrow Each intermediate step:

Aggregate the 2 clusters associated with the smallest increase of D_K

 \longrightarrow Last step: All the observations are in the same cluster

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Partitioning algorithm

We can improve the clustering quality by performing a "consolidation":

 \Longrightarrow Use the hierarchical result as initial partition

 \Longrightarrow In each block, compute the distance between the observations and the cluster centroids

 \Longrightarrow For each observation, sum the distances with the centroids of each block and assign the observation to the nearest cluster.

 \implies Run the two last steps until convergence

 Introduction
 Method
 Illustration
 The case of Check-All-That-Apply data
 Conclusion

 000000000
 000000
 000000
 000000
 00
 00

Property

$$\sum_{l=1}^{m} ||X_l - c_l||^2 = D_K + \sum_{k=1}^{K} \sum_{l=1}^{m} n_k ||c_l - c_l^{(k)}||^2$$
$$= D_K + B_K$$

 n_k : Number of observations in cluster G_k . c_l : Centroid of block *l* $c_l^{(k)}$: Centroid of cluster G_k in block *l*

For each block, compute the Between clusters variation/ Total variation:

$$I_{l} = \frac{\sum_{k=1}^{K} n_{k} ||c_{l} - c_{l}^{(k)}||^{2}}{||X_{l} - c_{l}||^{2}}$$

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Choice of the number of clusters: use of Hartigan index

$$H(K) = \left(\frac{\text{Within-clusters variation}_{K}}{\text{Within-clusters variation}_{K+1}} - 1\right)(n - K - 1)$$
$$= \left(\frac{D_{K}}{D_{K+1}} - 1\right)(n - K - 1)$$

where *n* is the number of observations and D_K is the criterion with *K* clusters

Decision: *K* associated with the maximum of difference between H(K-1) - H(K)

Hartigan, J. A. (1975)

Method 00000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Choice of the number of clusters: use of Calinski-Harabasz index

$$\begin{aligned} \mathcal{CH}(\mathcal{K}) &= \frac{\mathsf{Between-clusters variation}_{\mathcal{K}} \times (n-\mathcal{K})}{\mathsf{Within-clusters variation}_{\mathcal{K}} \times (\mathcal{K}-1)} \\ &= \frac{\mathsf{B}_{\mathcal{K}} \times (n-\mathcal{K})}{\mathsf{D}_{\mathcal{K}} \times (\mathcal{K}-1)} \end{aligned}$$

where D_K is the criterion with K clusters and B_K the Between-clusters variation with K clusters

Decision: K associated with the maximum of CH(K)

Caliński, T., & Harabasz, J. (1974).

 Introduction
 Method
 Illustration
 The case of Check-All-That-Apply data

 000000000
 0000000
 0000000
 0000000

Introduction

Method

Illustration

The case of Check-All-That-Apply data

Illustration Discussion: Benefits over the standard method

Conclusion

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Data description

Life conditions in 540 cities and villages of Gironde (South West of France)

3 blocks of variables:

- Housing (3 variables)
- Employment (9 variables)
- Environment (4 variables)

Example: the 4 variables of environment are building, water, vegetation, agriculture. Each variable represents the percentage of land (*i.e.* building land, water land, ...)

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion 00

Importance of standardization of each block

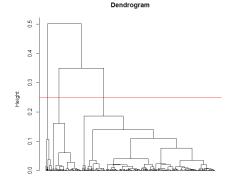
- \implies Different scales in the various blocks
- \implies Different number of variables

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Hierarchical algorithm results



Cities

Hartigan index suggestion: 3 clusters Calinski-Harabasz index suggestion: 2 clusters

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

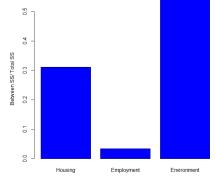
Partitioning algorithm consolidation

- \implies Initialisation by the hierarchical results in 3 clusters
- \Longrightarrow 6% of communes change of cluster
- \implies The minimization criterion decreases by 3%.

 Introduction
 Method
 Illustration
 The case of Check-All-That-Apply data

 000000000
 0000000
 0000000
 0000000

Indices: Between clusters variation/ Total variation



Blocks

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Introduction

Method

Illustration

The case of Check-All-That-Apply data Illustration Discussion: Benefits over the standard method

Conclusion

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Check-All-That-Apply (CATA) data

Each subject is asked to check the attributes related to each of the given products:

	P	ease,	check	all	the	words	s or	phrases	which	best	describe	this	s prod	uct:
--	---	-------	-------	-----	-----	-------	------	---------	-------	------	----------	------	--------	------

Sweet	Bitter
Bland	Dry
Sour	Firm
Chewy	Crunchy
Juicy	Mealy
Floral	Soft
Hard	Off flavour

 \Longrightarrow One block per subject

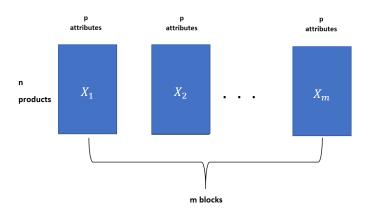
Meyners et al., 2013

on Method Illustration

The case of Check-All-That-Apply data

Conclusion

Data structure



Binary data:

- \implies 1: Attribute checked
- \implies 0: Attribute not checked

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Data description

- 9 beers
- 15 attributes
- 76 subjects

Attributes: Situations in which the subjects could see themselves drinking the beer: At a party, at a BBQ, while watching TV, at rugby, at fine dining...

Giacalone et al., 2015

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Importance of standardization

Same scale, same number of variables...

But some subjects tend to check a lot of attributes compared to others!

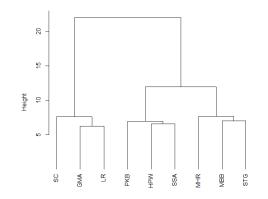
 \implies The subjects must be put on an equal footing

Method 000000000 Illustration

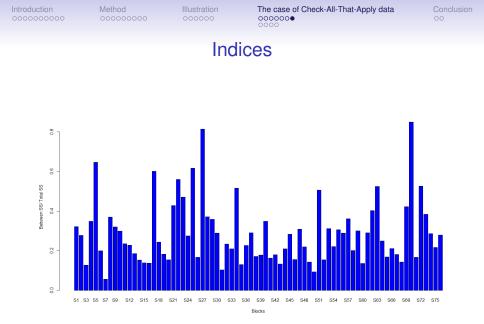
The case of Check-All-That-Apply data

Conclusion

Hierarchical algorithm results



 \Longrightarrow Cut in two clusters and use the partitioning algorithm (no changes)



Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Introduction

Method

Illustration

The case of Check-All-That-Apply data Illustration Discussion: Benefits over the standard method

Conclusion

Usual approach to clustering products with CATA data

The usual method of clustering products in a CATA experiment:

- Compute the contingency table products \times attributes
- Perform a Correspondence Analysis on this contingency table
- Use the CA axes to perform a cluster analysis

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Toy example

	A1	A2	Α3	Α4
Ρ1	1	1	0	0
P2	1	1	0	0
Ρ3	0	0	1	1
Ρ4	0	0	1	1

	A1	A2	A3	A4
P1	0	0	1	1
P2	0	0	1	1
P3	1	1	0	0
P4	1	1	0	0

	A1	A2	Α3	Α4
P1	0	0	1	1
P2	0	0	1	1
P3	1	1	0	0
P4	1	0	0	0

Subjects A, B and C

 $\implies 5 \text{ subjects A} \\ \implies 4 \text{ subjects B} \\ \implies 1 \text{ subject C}$

	A1	A2	Α3	A4
Ρ1	5	5	5	5
P2	5	5	5	- 5
Р3	5	5	5	5
Ρ4	5	4	5	5

Contingency table

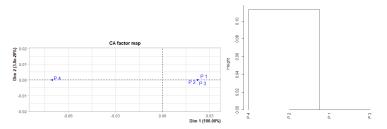
Method

Illustration

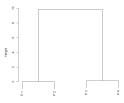
The case of Check-All-That-Apply data

Conclusion

Clustering results



CA on contingency table



Our clustering method

ction Method

0 0

The case of Check-All-That-Apply data

Conclusion

Introduction

Method

Illustration

The case of Check-All-That-Apply data

Illustration Discussion: Benefits over the standard method

Conclusion

Method 000000000 Illustration

The case of Check-All-That-Apply data

Conclusion

Conclusion

- We have introduced a clustering method of observations in the case of data structured in several blocks of variables
- This method is based on an aggregation criterion similar to Ward's criterion.
- Two algorithms have been proposed
- An aid for choosing the number of clusters has been added
- A clustering quality index within each block has been introduced
- We have investigated the benefits of the method in the specific case of CATA data
- Perspectives: by taking account of the multiblock structure, we could take account of:
 - Specificities of some blocks (*e.g.* categorical variables)
 - Apply specific clustering strategies to some blocks