SVM-Based Models for Pill Shape Classification

William Franz Lamberti¹

University of Virginia

June 3, 2021

¹MS Statistical Science PhD Computational Sciences and Informatics © William Franz Lamberti

Outline

Introduction

SPEI

HILT Model

Conclusion

Acknowledgements

© William Franz Lamberti

Introduction

- Pill identification not where it needs to be
- Pill shape classification best via Maddala et. al.
- Goal: Develop a model for pill shape classification

SPEI: Overview

Figure 1: SPEI overview. Starts with Figure 1a and ends with 1d going from left to right. © William Franz Lamberti

SPEI: Data

Pentagon

Hexagon

Data from National Library of Medicine

SPEI: Experimental Setup

- ▶ 100 runs per Training Size
- k different Training Sizes per class
- Definitions
 - Training: Data used to build the model
 - Validation: Data not used to build the model
- Build SPEI-based SVM model
- Compare to CNN model

SPEI: Results

Model	3	4	5	6	Data Set
CNN	0.98	0.92	0.90	0.84	Train
SVM	1.00	1.00	1.00	1.00	Train
CNN	0.73	0.72	0.74	0.74	Valid
SVM	0.70	0.75	0.80	0.85	Valid

- SPEI-based SVM with radial kernel outperformed CNN by about 5.76%
- CNNs struggle in small data scenarios
- Github link: https: //github.com/billy1320/SPEI-Paper/tree/nml_nih

HILT Model: Data

Class	Training Count	Validation Count	
Capsule	25	307	
Diamond	6	6	
Hexagon	4	4	
Oval	25	661	
Pentagon	6	6	
Rectangle	3	3	
Round	25	881	
Semi-circle	2	2	
Square	4	4	
Tear	5	5	
Trapezoid	2	2	
Triangle	6	6	
Total	113	1887	

HILT Model: Metrics

HILT Model: Setup

HILT Model: Results

Predicted/Truth Train	Capsule	Oval
Capsule	23	0
Oval	2	25

Predicted/Truth Valid	Capsule	Oval
Capsule	307	41
Oval	0	622

HILT Model: Plot

HILT Model: Results

Model	SVM - P	SVM - R	SVM - S	NB
MP	0.355	0.757	0.269	0.623
Model	LDA	Maddala	Lamberti	
MP	0.801	0.897	0.990	

- HILT SVM with polynomial kernel outperformed other models by about 95%
- ► MP = mean precision
- Breaking down multinomial into series of binary classification problems
- Github link: https:

//github.com/billyl320/human_decision_tree_pills

Conclusion

- HILT outperforms all other approaches
 - Overall Mean Outperformance: 95%
- HILT model important variables
 - ► SP
 - Eccentricity
- Future work would provide a completely machine driven approach
- Lamberti, "Algorithms to Improve Analysis and Classification for Small Data", 2020, http://search.proquest.com/ docview/2476825035/abstract/90CC4207B46B4068PQ/1
- US Patent pursued by GMU
- ► My chapter in "AI Assurance: Towards Valid, Explainable, Fair, and Ethical AI" (Spring 2022)

Acknowledgements - George Mason University

- Dr. Jason Kinser
- Dr. William G. Kennedy
- Dr. Michael Eagle
- Dr. David I. Holmes
- George Mason University's Office of the Provost for funding

Acknowledgements - University of Virginia: Zang Lab

Chongzhi Zang, PhD

Shengen Hu, PhD

Qingying Chen, PhD

Mengxue Tian

Zhenjia Wang, PhD

Chris Dampier, MD

William F. Lamberti, PhD

Hongpan Zhang