Multifile Record Linkage and Duplicate Detection Via a Structured Prior for Partitions

Serge Aleshin-Guendel Joint work with Mauricio Sadinle University of Washington, Department of Biostatistics

June 5, 2020

What is this talk about?

- It's common to have data sources containing information on possibly overlapping sets of entities
- We'd like to merge these sources to harness all the available information for an analysis
- But how do you accomplish this merging when there are no unique identifiers for the records?

Why "Record Linkage"?

- Common scenario: 2 data sources containing records on overlapping subsets of some population
- Due to knowledge of the data collection, we assume that there are no duplicates within either source
- But there are no unique identifiers for the records!
- How do we "link" records between sources? Record Linkage

Datafile 1

Name	DOB	\ldots	
John M. Doe	Feb/11/1990	\ldots	\ldots
John H. Doe	Apr/24/1990	\ldots	?
John G. Doe	Oct/03/1990	\ldots	?
\ldots	\ldots	\ldots	
Juan A. Gómez	Jul/NA/1950	\ldots	\ldots

Datafile 2

Juan A. Cómez Jul/02/1950
\qquad

Why "Duplicate Detection"?

- Another common scenario: 1 data source
- Due to knowledge of the data collection, we assume that there are duplicates within the data source
- Again there are no unique identifiers for the records!
- How do we "detect" which of these records are duplicates? Duplicate Detection

Datafile 2		
Name	DOB	\ldots
John Doe	NA/NA/1990	\ldots
\ldots	\ldots	\ldots
\ldots	\ldots	\ldots
Juan Gómes	Jul/NA/1950	\ldots
Juan A. Cómez	Jul/O2/1950	\ldots
\ldots	\ldots	\ldots

Why "Multifile Record Linkage and Duplicate Detection"?

- Wording in the last two slides was very deliberate
- What if we have something in between or beyond?
- These scenarios all fall under the overarching problem of Multifile Record Linkage and Duplicate Detection

Why "Via a Structured Prior for Partitions"?

- This is SDSS so there should be statistics somewhere
- As a statistical problem, we want to estimate a partition of the records into clusters representing the same entity

Datafile 1

Why "Via a Structured Prior for Partitions"?

- But how do you estimate a partition?
- If you're Bayesian how do you construct priors on partitions?
- Further how do you construct priors on partitions that are relevant to our setting?
Via a Structured Prior for Partitions

Setup

- Have r records in K files $\boldsymbol{X}_{1}, \cdots, \boldsymbol{X}_{K}$
- Each record has F fields of information
- Our data are these fields
- Our parameter of interest is a partition, \mathcal{C}, of the records
- As in most statistical models, want to model our data conditional on our parameter of interest

First Name	Last Name	Age	Zip Code	Phone Number
Jennifer	Smith	30	96024	$301-867-5309$

Generative Processes

- We need a prior for partitions, and a likelihood for fields
- Will first focus on the prior for partitions first
- A useful starting point is to construct a hypothetical generative process for our data

A Generative Process for Record Linkage

"True" records of the latent entities

Name	DOB
John Smith	$07 / 14 / 1987$
Jane Doe	$06 / 22 / 1992$
Robert Kim	$05 / 03 / 1979$
\ldots	

A Generative Process for Record Linkage

A Generative Process for Record Linkage

A Generative Process for Record Linkage

		Observed records	
		File 1	
		Name	DOB
		John Smit	07/14/1987
"True" records of the latent entities		Jon Smith	07/14/1986
		John Smyth	07/19/1987
Name	DOB	...	
John Smith	07/14/1987	File 2	
Jane Doe	06/22/1992	Name	DOB
Robert Kim	05/03/1979	John	NA
		Jan	NA
			..
			e 3
		Name	DOB
		Robert Kim	05/03/1974
		Bob Kim	05/03/1979
			..

A Generative Process for Record Linkage

From a Generative Process to a Prior for Partitions

- By parameterizing each step of the generative process we can form a prior for partitions!

Step 1: Number of Latent Entities

- First place a prior on the number of latent entities, n
- Lots of distributions on $\{1,2,3, \cdots\}$ that can be used to incorporate prior information

$$
P(\mathcal{C})=P(n) \times \cdots
$$

Step 1: Number of Latent Entities

Observed records

File 1	
Name	DOB
John Smit	$07 / 14 / 1987$
Jon Smith	$07 / 14 / 1986$
John Smyth	$07 / 19 / 1987$

\(\left.\begin{array}{|l|l|}\hline Name \& DOB

\hline John Smith \& 07 / 14 / 1987

\hline Jane Doe \& 06 / 22 / 1992

\hline Robert Kim \& 05 / 03 / 1979

\hline\end{array}\right\}\)| |
| :--- |
| There are $n=3$
 latent entities
 represented in the
 observed records |

File 2	
Name	DOB
John	NA
Jan	NA

File 3	
Name	DOB
Robert Kim	$05 / 03 / 1974$
Bob Kim	$05 / 03 / 1979$

Step 2: Overlap

- Conditional on n, we place a prior on the number of entities "captured" by each subset of files $\{1, \cdots, K\}$
- E.g. for $K=3$ files, the counts can be represented as

	Not In File 2		In File 2	
	Not In File 1	In File 1	Not In File 1	In File 1
Not In File 3	-	n_{100}	n_{010}	n_{110}
In File 3	n_{001}	n_{101}	n_{011}	n_{111}

- Refer to this collection of counts as

$$
\boldsymbol{n}=\left(n_{100}, n_{010}, n_{001}, n_{110}, n_{101}, n_{011}, n_{111}\right)
$$

- We want to place a prior on $\boldsymbol{n} \mid n$
- Natural choices are multinomial or Dirichlet-multinomial

$$
P(\mathcal{C})=P(n) \times P(\boldsymbol{n} \mid n) \times \cdots
$$

Step 2: Overlap

Observed records

	Not In File 2		In File 2	
	Not In File 1	In File 1	Not In File 1	In File 1
Not In File 3	-	$n_{100}=0$	$n_{010}=1$	$n_{110}=1$
In File 3	$n_{001}=1$	$n_{101}=0$	$n_{011}=0$	$n_{111}=0$

John Smith
is in File 1
and File 2

Jane Doe is
in File 2

$\left\{\right.$| File 1 | |
| :--- | :--- |
| Name | DOB |
| John Smit | $07 / 14 / 1987$ |
| Jon Smith | $07 / 14 / 1986$ |
| John Smyth | $07 / 19 / 1987$ |
| File 2
 Name DOB
 John NA
 Jan NA | |

Step 3: Number of Duplicates

- Conditional on the number of entities in each file, place a prior on the number of duplicates for each entity in each file
- Call this collection of duplicate counts \boldsymbol{d}
- Lots of distributions on $\{1,2,3, \cdots\}$ that can be used to incorporate prior information

$$
P(\mathcal{C})=P(n) \times P(\boldsymbol{n} \mid n) \times P(\boldsymbol{d} \mid \boldsymbol{n}) \times \cdots
$$

Step 3: Number of Duplicates

"True" records of the latent entities

Name	DOB
John Smith	$07 / 14 / 1987$
Jane Doe	$06 / 22 / 1992$
Robert Kim	$05 / 03 / 1979$

Step 4: Putting it All Together

- So far l've just been putting priors on summaries of the partition
- E.g. we know there is an entity that's in File 1 and File 2, but we haven't specified which entity it is!
- Need to count how many partitions give rise to our summaries!
- Simple counting argument

$$
P(\mathcal{C})=P(n) \times P(\boldsymbol{n} \mid n) \times P(\boldsymbol{d} \mid \boldsymbol{n}) \times P(\mathcal{C} \mid \boldsymbol{n}, \boldsymbol{d})
$$

Sidenote: K-partite Matchings

- For a given file, can enforce an assumption of no duplicates
- Just need to make the prior for the number of duplicates a point mass at 1 !
- If we make this restriction for all K files, we wind up with a prior on K-partite matchings!
- Seems to be novel (Besides the bipartite case)

Inspirations

Inspired by previous work in record linkage and duplicate detection

- Two-File Record Linkage: Priors on bipartite matchings [Fortini et al. (2001, 2002), Larsen (2005), Sadinle (2017)]
- Single-File Duplicate Detection: Kolchin partition priors [Zanella et al. (2016)]

Comparison-Based Modeling of Fields

- Modeling fields directly is hard! (How do you model names?)
- Instead compare fields for each pair of records, model that
- Idea is that similar records are probably matches

Record	First Name	Last Name	Age	\cdots
i	Benedict	Cumberbatch	40	\cdots
j	Benedict	Cucumberbatch	39	\cdots

- And dissimilar records are probably not matches

Record	First Name	Last Name	Age	\cdots
i	Benedict	Cumberbatch	40	\cdots
j	Martin	Freeman	45	\cdots

Comparison Data

- For each pair of records i, j, generate a vector containing comparisons for each field $\gamma_{i j}=\left(\gamma_{i j}^{1}, \cdots, \gamma_{i j}^{F}\right)$
- Examples:
- Strings (names, telephone numbers, etc.) can use Levenshtein distance (also known as the edit distance)
- Categorical data can use binary comparison
- Numeric data can use absolute distance
- For each field f being compared, discretize the comparison $\gamma_{i j}^{f}$ into L_{f} categories
- Rely on generic models for categorical data

Comparison Data Model

- Let record i be from file \boldsymbol{X}_{k} and record j be from file $\boldsymbol{X}_{k^{\prime}}$
- Let $\mathcal{C}(i)$ represent the cluster in \mathcal{C} that record i belongs to

$$
\begin{aligned}
& \gamma_{i j}^{f} \mid \mathcal{C}(i)=\mathcal{C}(j) \stackrel{i i d}{\sim} \text { Multinomial }\left(1, \boldsymbol{m}_{k k^{\prime}}^{f}\right), \\
& \gamma_{i j}^{f} \mid \mathcal{C}(i) \neq \mathcal{C}(j) \stackrel{i i d}{\sim} \text { Multinomial }\left(1, \boldsymbol{u}_{k k^{\prime}}^{f}\right), \\
& \mathcal{C} \sim \text { Prior on Partitions }
\end{aligned}
$$

- Use flat Dirichlet priors on $\boldsymbol{m}_{k k^{\prime}}^{f}, \boldsymbol{u}_{k k^{\prime}}^{f}$
- Different likelihood for each pair of files!

Posterior Computation

- Gibbs sampler

Point Estimates

- Combine the posterior $P(\mathcal{C} \mid \gamma)$ with an appropriate loss function $L(\hat{\mathcal{C}}, \mathcal{C})$
- Bayes estimate is partition $\hat{\mathcal{C}}$ that minimizes $E[L(\hat{\mathcal{C}}, \mathcal{C}) \mid \gamma]=\sum_{\mathcal{C}} L(\hat{\mathcal{C}}, \mathcal{C}) P(\mathcal{C} \mid \gamma)$
- We'll specify L that allows uncertain portions of the partition to be left unresolved (abstain option)
- Unresolved portions can get resolved in clerical review
- Use MCMC samples to approximate posterior loss

Loss Function

- We will specify the loss additiviely $L(\hat{\mathcal{C}}, \mathcal{C})=\sum_{i=1}^{r} L_{i}(\hat{\mathcal{C}}, \mathcal{C})$
- Let $\Delta_{i j}=I(\mathcal{C}(i)=\mathcal{C}(j))$, and likewise $\hat{\Delta}_{i j}=I(\hat{\mathcal{C}}(i)=\hat{\mathcal{C}}(j))$

$$
L_{i}(\hat{\mathcal{C}}, \mathcal{C})= \begin{cases}\lambda_{A}, & \text { if } \hat{\mathcal{C}}(i)=A \\ \end{cases}
$$

- Loss λ_{A} when we abstain from making a decision for record i
- No abstain option when $\lambda_{A}=\infty$

Loss Function

- We will specify the loss additiviely $L(\hat{\mathcal{C}}, \mathcal{C})=\sum_{i=1}^{r} L_{i}(\hat{\mathcal{C}}, \mathcal{C})$
- Let $\Delta_{i j}=I(\mathcal{C}(i)=\mathcal{C}(j))$, and likewise $\hat{\Delta}_{i j}=I(\hat{\mathcal{C}}(i)=\hat{\mathcal{C}}(j))$

$$
L_{i}(\hat{\mathcal{C}}, \mathcal{C})= \begin{cases}\lambda_{A}, & \text { if } \hat{\mathcal{C}}(i)=A \\ 0, & \text { if } \Delta_{i j}=\hat{\Delta}_{i j} \text { for all } j \text { where } \hat{\mathcal{C}}(j) \neq A \\ \end{cases}
$$

- Loss 0 when we get record i's cluster correct

Loss Function

- We will specify the loss additiviely $L(\hat{\mathcal{C}}, \mathcal{C})=\sum_{i=1}^{r} L_{i}(\hat{\mathcal{C}}, \mathcal{C})$
- Let $\Delta_{i j}=I(\mathcal{C}(i)=\mathcal{C}(j))$, and likewise $\hat{\Delta}_{i j}=I(\hat{\mathcal{C}}(i)=\hat{\mathcal{C}}(j))$

$$
L_{i}(\hat{\mathcal{C}}, \mathcal{C})= \begin{cases}\lambda_{A}, & \text { if } \hat{\mathcal{C}}(i)=A \\ 0, & \text { if } \Delta_{i j}=\hat{\Delta}_{i j} \text { for all } j \text { where } \hat{\mathcal{C}}(j) \neq A \\ \lambda_{\mathrm{FNM}}, & \text { if } \sum_{j \neq i} \hat{\Delta}_{i j}=0, \quad \sum_{j \neq i} \Delta_{i j}>0 \\ \end{cases}
$$

- Loss $\lambda_{\text {FNM }}$ when we have a false non-match
- Deciding that record i does not match any other record when in fact it does

Loss Function

- We will specify the loss additiviely $L(\hat{\mathcal{C}}, \mathcal{C})=\sum_{i=1}^{r} L_{i}(\hat{\mathcal{C}}, \mathcal{C})$
- Let $\Delta_{i j}=I(\mathcal{C}(i)=\mathcal{C}(j))$, and likewise $\hat{\Delta}_{i j}=I(\hat{\mathcal{C}}(i)=\hat{\mathcal{C}}(j))$

$$
L_{i}(\hat{\mathcal{C}}, \mathcal{C})= \begin{cases}\lambda_{A}, & \text { if } \hat{\mathcal{C}}(i)=A \\ 0, & \text { if } \Delta_{i j}=\hat{\Delta}_{i j} \text { for all } j \text { where } \hat{\mathcal{C}}(j) \neq A, \\ \lambda_{\mathrm{FNM}}, & \text { if } \sum_{j \neq i} \hat{\Delta}_{i j}=0, \quad \sum_{j \neq i} \Delta_{i j}>0 \\ \lambda_{\mathrm{FM} 1}, & \text { if } \sum_{j \neq i} \hat{\Delta}_{i j}>0, \quad \sum_{j \neq i} \Delta_{i j}=0\end{cases}
$$

- Loss $\lambda_{\mathrm{FM} 1}$ when we have a type 1 false match
- Deciding that record i matches other records when it doesn't actually match any other record

Loss Function

- We will specify the loss additiviely $L(\hat{\mathcal{C}}, \mathcal{C})=\sum_{i=1}^{r} L_{i}(\hat{\mathcal{C}}, \mathcal{C})$
- Let $\Delta_{i j}=I(\mathcal{C}(i)=\mathcal{C}(j))$, and likewise $\hat{\Delta}_{i j}=I(\hat{\mathcal{C}}(i)=\hat{\mathcal{C}}(j))$

$$
L_{i}(\hat{\mathcal{C}}, \mathcal{C})= \begin{cases}\lambda_{A}, & \text { if } \hat{\mathcal{C}}(i)=A, \\ 0, & \text { if } \Delta_{i j}=\hat{\Delta}_{i j} \text { for all } j \text { where } \hat{\mathcal{C}}(j) \neq A \\ \lambda_{\mathrm{FNM}}, & \text { if } \sum_{j \neq i} \hat{\Delta}_{i j}=0, \quad \sum_{j \neq i} \Delta_{i j}>0, \\ \lambda_{\mathrm{FM} 1}, & \text { if } \sum_{j \neq i} \hat{\Delta}_{i j}>0, \quad \sum_{j \neq i} \Delta_{i j}=0, \\ \lambda_{\mathrm{FM} 2}, & \text { if } \sum_{j \neq i} \hat{\Delta}_{i j}>0, \quad \sum_{j \neq i}\left(1-\hat{\Delta}_{i j}\right) \Delta_{i j}>0\end{cases}
$$

- Loss $\lambda_{\text {FM } 2}$ when we have a type 2 false match
- Deciding that record i is matched to other records but it does not match all of the records it should be matching

Approximating the Bayes Estimate

- Minimizing $E[L(\hat{\mathcal{C}}, \mathcal{C}) \mid \gamma]=\sum_{\mathcal{C}} L(\hat{\mathcal{C}}, \mathcal{C}) P(\mathcal{C} \mid \gamma)$ exactly is computationally intractable
- The number of partitions of r records gets very large very fast
- In practice large number of record pairs will have ≈ 0 posterior probability of matching
- Break records up into connected components with posterior probability of matching $>\delta$
- These connected components will hopefully have $\ll r$ records
- Minimize loss over MCMC samples within each connected component

Simulations

- Our approach worked well in simulations
- Omitted for time, additional slides in appendix

Application: Homicides in Colombia

- Data provided by the Conflict Analysis Resource Center (CERAC)
- 3 record systems containing information on homicides from 2004 in the Quindio province of Colombia
- Departamento Administrativo Nacional de Estadistica, DANE (323 records)
- Policia Nacional de Colombia, PN (157 records)
- Instituto Nacional de Medicina Legal y Ciencias Forenses, ML (289 records)
- All 3 systems are believed to be free of duplicates
- Records previously linked by hand, gives us a ground truth

Application: Homicides in Colombia

- Fields available for all 3 systems:
- Municipality and date of the homicide
- Whether the location of the homicide was urban or rural
- Age, sex, and marital status of the victim
- Additionally educational status of the victim is available in DANE and ML

Application: Results

- Full Bayes estimate (not using abstain option):
- Precision of 93\%
- How many of the links we made were correct?
- Recall of 96%
- How many of the true links did we get correct?
- Partial Bayes estimate (using abstain option):
- Precision of 95%
- How many of the links we made were correct?
- Abstention rate of 10%
- For how many of the records did we abstain?

Application: Results

- True number of entities was $n=383$
- 95% credible interval of $[376,388]$
- Estimate (based on full Bayes estimate) of $\hat{n}=378$

Application: Results

- Dashed lines are estimates (based on full Bayes estimate)
- Solid lines are ground truth

	In PN		Out PN	
DANE	In ML	Out ML	In ML	Out ML
In				
Out				-

Conclusions

- It always helps to think about data generating processes!
- Novel prior on partitions (and K-partite matchings)
- Loss function with abstain option allows uncertain portions of the partition to be left unresolved

That's All!

- Questions?
- Email: aleshing@uw.edu
- Paper and accompanying R package multilink coming soon
- Research was supported by NSF grant SES-1852841

Sampling the Partition

Suppose we have samples of the partition \mathcal{C} and parameters of the likelihood $\Phi=\left\{\boldsymbol{m}_{k k^{\prime}}^{f}, \boldsymbol{u}_{k k^{\prime}}^{f}\right\}$, and we'd like to resample record j 's cluster assignment, where j is in file \boldsymbol{X}_{k}. Let \mathcal{C}_{-j} denote the partition with record j removed. Then if $c \in \mathcal{C}_{-j}$ or $c=\emptyset$ (i.e. we're creating a new cluster):

$$
\begin{aligned}
& p\left(\text { record } j \text { gets assigned to } c \mid \mathcal{C}_{-j}, \Phi\right) \propto \\
& \left\{\begin{array}{l}
p_{k}(1) \times\left[\frac{\left(n\left(\mathcal{C}_{-j}\right)+1\right)\left(n_{h(k)}\left(\mathcal{C}_{-j}\right)+\alpha_{h(k)}\right)}{\left(n\left(\mathcal{C}_{-j}\right)+\boldsymbol{\alpha}_{0}\right)}\right] \times\left[\frac{p\left(n\left(\mathcal{C}_{-j}\right)+1\right)}{p\left(n\left(\mathcal{C}_{-j}\right)\right)}\right], \text { if }|c|=0 \\
{\left[\prod_{i \in c} \mathcal{L}_{i j}\right] \times p_{k}(1) \times\left[\frac{n_{h_{c, j}}\left(\mathcal{C}_{-j}\right)+\alpha_{h_{c, j}}}{n_{h_{c,-j}}\left(\mathcal{C}_{-j}\right)+\alpha_{h_{c,-j}}-1}\right], \text { if }\left|c^{k}\right|=0,|c|>0} \\
{\left[\prod_{i \in c} \mathcal{L}_{i j}\right] \times\left[\left(\left|c^{k}\right|+1\right) \frac{p_{k}\left(\left|c^{k}\right|+1\right)}{p_{k}\left(\left|c^{k}\right|\right)}\right], \text { if }\left|c^{k}\right|>0}
\end{array}\right.
\end{aligned}
$$

Sampling the Partition

If $|c|=0$, we're creating a new cluster,

$$
\begin{gathered}
p\left(\text { record } j \text { gets assigned to } c \mid \mathcal{C}_{-j}, \Phi\right) \propto \\
p_{k}(1) \times\left[\frac{\left(n\left(\mathcal{C}_{-j}\right)+1\right)\left(n_{h(k)}\left(\mathcal{C}_{-j}\right)+\alpha_{h(k)}\right)}{\left(n\left(\mathcal{C}_{-j}\right)+\boldsymbol{\alpha}_{0}\right)}\right] \times\left[\frac{p\left(n\left(\mathcal{C}_{-j}\right)+1\right)}{p\left(n\left(\mathcal{C}_{-j}\right)\right)}\right]
\end{gathered}
$$

- $p_{k}(1)$: prior prob. of having 1 duplicate for a cluster in file \boldsymbol{X}_{k}
- $n\left(\mathcal{C}_{-j}\right)$: number of clusters in \mathcal{C}_{-j}
- $n_{h(k)}\left(\mathcal{C}_{-j}\right)$: number of clusters in \mathcal{C}_{-j} only containing records from \boldsymbol{X}_{k}
- $\alpha \ldots$: prior hyperparameters for contingency table of overlap

Sampling the Partition

If $c \neq \emptyset$ but doesn't contain other records from file \boldsymbol{X}_{k},

$$
\begin{gathered}
p\left(\text { record } j \text { gets assigned to } c \mid \mathcal{C}_{-j}, \Phi\right) \propto \\
{\left[\prod_{i \in c} \mathcal{L}_{i j}\right] \times p_{k}(1) \times\left[\frac{n_{h_{c, j}}\left(\mathcal{C}_{-j}\right)+\alpha_{h_{c, j}}}{n_{h_{c,-j}}\left(\mathcal{C}_{-j}\right)+\alpha_{h_{c,-j}}-1}\right]}
\end{gathered}
$$

- $\mathcal{L}_{i j}$: the likelihood contribution for the comparison between record i and record j
- $n_{h_{c, j}}\left(\mathcal{C}_{-j}\right)$: number of clusters with same overlap as $c \cup\{j\}$ (i.e. the cluster c if you add j to it)
- $n_{h_{c,-j}}\left(\mathcal{C}_{-j}\right)$: number of clusters with same overlap as c (i.e. the cluster c if you don't add j to it)

Sampling the Partition

If c contains other records from file \boldsymbol{X}_{k},

$$
\begin{aligned}
& p\left(\text { record } j \text { gets assigned to } c \mid \mathcal{C}_{-j}, \Phi\right) \propto \\
& {\left[\prod_{i \in c} \mathcal{L}_{i j}\right] \times\left[\left(\left|c^{k}\right|+1\right) \frac{p_{k}\left(\left|c^{k}\right|+1\right)}{p_{k}\left(\left|c^{k}\right|\right)}\right]}
\end{aligned}
$$

- c^{k} : the number of records in c from file \boldsymbol{X}_{k}

Simulations

- 3 files, 500 latent entities
- Varying scenarios of measurement error, overlap, and duplication
- 100 simulated data sets for each scenario
- Partitions generated roughly according to our prior
- Actual records generated using code from group at ANU ${ }^{1}$

[^0]
Simulation 1: No Duplicates

- Vary amount of measurement error, overlap between files
- No duplicates, target is K-partite matching
- Comparisons between our comparison based model with
- Our proposed prior on K-partite matchings
- Uniform prior on K-partite matchings
- Full Bayes estimates (not using abstain option)

Simulation 1: No Duplicates

More overlap

- Black is proposed prior, grey is flat prior, solid lines are medians, dotted lines are 2nd and 98th quantiles

Simulation 2: Duplicates

- Vary amount of measurement error, duplication within files
- Number of duplicates generated from Poisson with varying means, truncated to $\{1, \cdots, 5\}$
- Fix overlap to be low, $\sim 90 \%$ of entities only in one file
- Comparisons between
- Our model with Poisson(1) prior on duplicates, truncated to $\{1, \cdots, 10\}$
- Model of Sadinle (2014) which uses a flat prior on partitions and treats all records as coming from one file
- Indexing to reduce number of comparisons
- Full Bayes estimates (not using abstain option)

Simulation 2: Duplicates

More Duplicates

- Black is proposed approach, grey is Sadinle (2014), solid lines are medians, dotted lines are 2nd and 98th quantiles

Simulation 3: Duplicates, Abstain Option

- Low Duplication setting from Simulation 2
- How does performance change when we use partial Bayes estimates (using the abstain option)?

Simulation 3: Duplicates, Abstain Option

- Black are partial estimates, grey are full estimates, solid lines are medians, dotted lines are 2nd and 98th quantiles

[^0]: ${ }^{1}$ https://dmm.anu.edu.au/geco/index.php

