Multifile Record Linkage and Duplicate Detection Via a Structured Prior for Partitions

Serge Aleshin-Guendel
Joint work with Mauricio Sadinle
University of Washington, Department of Biostatistics

June 5, 2020

What is this talk about?

- It's common to have data sources containing information on possibly overlapping sets of entities
- We'd like to merge these sources to harness all the available information for an analysis
- But how do you accomplish this merging when there are no unique identifiers for the records?

Why "Record Linkage"?

- Common scenario: 2 data sources containing records on overlapping subsets of some population
- ▶ Due to knowledge of the data collection, we assume that there *are no* duplicates within either source
- But there are no unique identifiers for the records!
- ► How do we "link" records between sources? Record Linkage

Da	itafile 1		Da	tafile 2	
Name	DOB	 	Name	DOB	
John M. Doe	Feb/11/1990	 - ?	John Doe	NA/NA/1990	
John H. Doe	Apr/24/1990	 			
John G. Doe	Oct/03/1990	 ****			
		 ?	Juan Gómes	Jul/NA/1950	
Juan A. Gómez	Jul/NA/1950	 *********	Juan A. Cómez	Jul/02/1950	
		 •			

Why "Duplicate Detection"?

- ▶ Another common scenario: 1 data source
- ▶ Due to knowledge of the data collection, we assume that there *are* duplicates within the data source
- Again there are no unique identifiers for the records!
- How do we "detect" which of these records are duplicates? **Duplicate Detection**

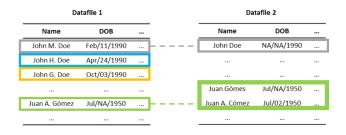
Datafile 2			
Name	DOB		
John Doe	NA/NA/1990		
Juan Gómes	Jul/NA/1950		
Juan A. Cómez	Jul/02/1950		

Why "Multifile Record Linkage and Duplicate Detection"?

- Wording in the last two slides was very deliberate
- ▶ What if we have something *in between or beyond*?
- These scenarios all fall under the overarching problem of Multifile Record Linkage and Duplicate Detection

Why "Via a Structured Prior for Partitions"?

- ▶ This is SDSS so there should be statistics somewhere
- ▶ As a statistical problem, we want to estimate a **partition** of the records *into clusters representing the same entity*



Why "Via a Structured Prior for Partitions"?

- But how do you estimate a partition?
- ▶ If you're Bayesian how do you construct priors on partitions?
- Further how do you construct priors on partitions that are relevant to our setting?

Via a Structured Prior for Partitions

Setup

- ▶ Have r records in K files X_1, \dots, X_K
- Each record has F fields of information
- Our data are these fields
- lackbox Our parameter of interest is a partition, \mathcal{C} , of the records
- As in most statistical models, want to model our data conditional on our parameter of interest

First Name	Last Name	Age	Zip Code	Phone Number
Jennifer	Smith	30	96024	301-867-5309

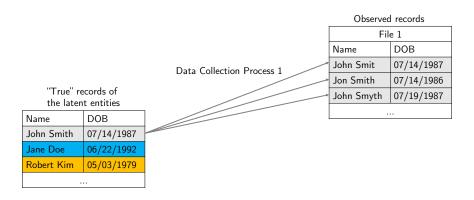
8

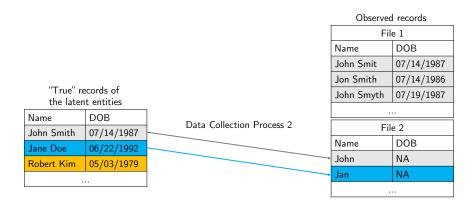
Generative Processes

- ▶ We need a prior for partitions, and a likelihood for fields
- Will first focus on the prior for partitions first
- ► A useful starting point is to construct a hypothetical generative process for our data

"True" records of the latent entities

Name	DOB	
John Smith	07/14/1987	
Jane Doe	06/22/1992	
Robert Kim	05/03/1979	





"True" records of the latent entities

Name	DOB	
John Smith	07/14/1987	
Jane Doe	06/22/1992	
Robert Kim	05/03/1979	

Data Collection Process 3

Observed records

Observed records		
File 1		
Name	DOB	
John Smit	07/14/1987	
Jon Smith	07/14/1986	
John Smyth	07/19/1987	
File 2		
Name	DOB	
John	NA	
Jan	NA	
File 3		
Name	DOB	
Robert Kim	05/03/1974	
Bob Kim	05/03/1979	
•		

"True" records of the latent entities

Name	DOB	
John Smith	07/14/1987	
Jane Doe	06/22/1992	
Robert Kim	05/03/1979	

Observed records

Observed records		
File 1		
Name	DOB	
John Smit	07/14/1987	
Jon Smith	07/14/1986	
John Smyth	07/19/1987	
File 2		
Name	DOB	
John	NA	
Jan	NA	
File 3		
Name	DOB	
Robert Kim	05/03/1974	
Bob Kim	05/03/1979	

From a Generative Process to a Prior for Partitions

▶ By parameterizing each step of the generative process we can form a prior for partitions!

Step 1: Number of Latent Entities

- First place a prior on the number of latent entities, n
- ▶ Lots of distributions on $\{1, 2, 3, \dots\}$ that can be used to incorporate prior information

$$P(C) = P(n) \times \cdots$$

Step 1: Number of Latent Entities

"True" records of the latent entities

DOB
07/14/1987
06/22/1992
05/03/1979

There are n=3 latent entities represented in the observed records

Observed records

File 1		
Name	DOB	
John Smit	07/14/1987	
Jon Smith	07/14/1986	
John Smyth	07/19/1987	

File 2		
Name	DOB	
John	NA	
Jan	NA	

File 3		
Name	DOB	
Robert Kim	05/03/1974	
Bob Kim	05/03/1979	

Step 2: Overlap

- ▶ Conditional on n, we place a prior on the number of entities "captured" by each subset of files $\{1, \dots, K\}$
- ▶ E.g. for K = 3 files, the counts can be represented as

	Not In F	ile 2	In File 2		
	Not In File 1	In File 1	Not In File 1	In File 1	
Not In File 3	-	n ₁₀₀	n ₀₁₀	n ₁₁₀	
In File 3	n ₀₀₁	n ₁₀₁	n ₀₁₁	n ₁₁₁	

Refer to this collection of counts as

$$\mathbf{n} = (n_{100}, n_{010}, n_{001}, n_{110}, n_{101}, n_{011}, n_{111})$$

- ▶ We want to place a prior on n | n
- Natural choices are multinomial or Dirichlet-multinomial

$$P(C) = P(n) \times P(n \mid n) \times \cdots$$

Step 2: Overlap

						Observed	d records				
	Not In File 2		In File 2							Fil	e 1
N. I. Ell. O.	Not In File 1	In File 1	Not In File 1	In File 1		Name	DOB				
Not In File 3	$n_{001} = 1$	$\frac{n_{100} = 0}{n_{101} = 0}$	$n_{010} = 1$ $n_{011} = 0$	$n_{110} = 1$ $n_{111} = 0$		John Smit	07/14/1987				
III THE 3	7001 — 1	1101 — 0	$n_{011} = 0$ $n_{111} = 0$			Jon Smith	07/14/1986				
			Joh	ın Smith	1	John Smyth	07/19/1987				
				n File 1	∣≺						
			and	l File 2]	File 2					
						Name	DOB				
					, [John NA					
				ie Doe is File 2	$<$	Jan	NA				
						Fil. o					
						File 3					
					_	Name	DOB				
			Rol	pert Kim	\	Robert Kim	05/03/1974				
			is i	n File 3	1	Bob Kim	05/03/1979				

Step 3: Number of Duplicates

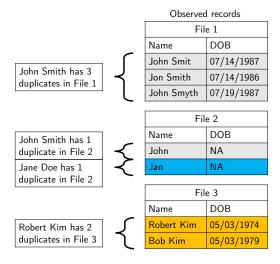
- Conditional on the number of entities in each file, place a prior on the number of duplicates for each entity in each file
- Call this collection of duplicate counts d
- ▶ Lots of distributions on $\{1, 2, 3, \dots\}$ that can be used to incorporate prior information

$$P(C) = P(n) \times P(\mathbf{n}|n) \times P(\mathbf{d}|\mathbf{n}) \times \cdots$$

Step 3: Number of Duplicates

"True" records of the latent entities

Name	DOB
John Smith	07/14/1987
Jane Doe	06/22/1992
Robert Kim	05/03/1979



Step 4: Putting it All Together

- ► So far I've just been putting priors on summaries of the partition
- ► E.g. we know there is an entity that's in File 1 and File 2, but we haven't specified which entity it is!
- Need to count how many partitions give rise to our summaries!
 - Simple counting argument

$$P(C) = P(n) \times P(\boldsymbol{n}|n) \times P(\boldsymbol{d}|\boldsymbol{n}) \times P(C|\boldsymbol{n},\boldsymbol{d})$$

Sidenote: K-partite Matchings

- ▶ For a given file, can enforce an assumption of no duplicates
 - ▶ Just need to make the prior for the number of duplicates a point mass at 1!
- ▶ If we make this restriction for all *K* files, we wind up with a prior on *K*-partite matchings!
- Seems to be novel (Besides the bipartite case)

Inspirations

Inspired by previous work in record linkage and duplicate detection

- ► Two-File Record Linkage: Priors on bipartite matchings [Fortini et al. (2001, 2002), Larsen (2005), Sadinle (2017)]
- ► Single-File Duplicate Detection: Kolchin partition priors [Zanella et al. (2016)]

Comparison-Based Modeling of Fields

- Modeling fields directly is hard! (How do you model names?)
- Instead compare fields for each pair of records, model that
- Idea is that similar records are probably matches

	Record	First Name	Last Name	Age	• • •
ſ	i	Benedict	Cumberbatch	40	• • •
	j	Benedict	Cucumberbatch	39	• • •

And dissimilar records are probably not matches

Record	First Name	Last Name	Age	
i	Benedict	Cumberbatch	40	
j	Martin	Freeman	45	

Comparison Data

- For each pair of records i, j, generate a vector containing comparisons for each field $\gamma_{ij} = (\gamma_{ij}^1, \cdots, \gamma_{ij}^F)$
- Examples:
 - Strings (names, telephone numbers, etc.) can use Levenshtein distance (also known as the edit distance)
 - Categorical data can use binary comparison
 - Numeric data can use absolute distance
- ▶ For each field f being compared, discretize the comparison γ_{ij}^f into L_f categories
 - Rely on generic models for categorical data

Comparison Data Model

- Let record i be from file X_k and record j be from file $X_{k'}$
- ▶ Let C(i) represent the cluster in C that record i belongs to

$$\begin{split} \gamma^f_{ij} | \mathcal{C}(i) &= \mathcal{C}(j) \stackrel{\textit{iid}}{\sim} \mathsf{Multinomial}(1, \boldsymbol{m}^f_{kk'}), \\ \gamma^f_{ij} | \mathcal{C}(i) &\neq \mathcal{C}(j) \stackrel{\textit{iid}}{\sim} \mathsf{Multinomial}(1, \boldsymbol{u}^f_{kk'}), \\ \mathcal{C} &\sim \mathsf{Prior} \; \mathsf{on} \; \mathsf{Partitions} \end{split}$$

- **b** Use flat Dirichlet priors on $m{m}_{kk'}^f$, $m{u}_{kk'}^f$
- Different likelihood for each pair of files!

Posterior Computation

► Gibbs sampler

Point Estimates

- ▶ Combine the posterior $P(C \mid \gamma)$ with an appropriate loss function $L(\hat{C}, C)$
- ▶ Bayes estimate is partition \hat{C} that minimizes $E[L(\hat{C}, C) \mid \gamma] = \sum_{\mathcal{C}} L(\hat{C}, C) P(C \mid \gamma)$
- We'll specify L that allows uncertain portions of the partition to be left unresolved (abstain option)
- Unresolved portions can get resolved in clerical review
- Use MCMC samples to approximate posterior loss

- ▶ We will specify the loss additiviely $L(\hat{C}, C) = \sum_{i=1}^{r} L_i(\hat{C}, C)$
- ▶ Let $\Delta_{ij} = I(\mathcal{C}(i) = \mathcal{C}(j))$, and likewise $\hat{\Delta}_{ij} = I(\hat{\mathcal{C}}(i) = \hat{\mathcal{C}}(j))$

$$L_i(\hat{\mathcal{C}},\mathcal{C}) = \left\{egin{array}{ll} \lambda_A, & ext{if } \hat{\mathcal{C}}(i) = A, \end{array}
ight.$$

- ▶ Loss λ_A when we abstain from making a decision for record i
- ▶ No abstain option when $\lambda_A = \infty$

- ▶ We will specify the loss additiviely $L(\hat{C}, C) = \sum_{i=1}^{r} L_i(\hat{C}, C)$
- ▶ Let $\Delta_{ij} = I(C(i) = C(j))$, and likewise $\hat{\Delta}_{ij} = I(\hat{C}(i) = \hat{C}(j))$

$$L_i(\hat{\mathcal{C}},\mathcal{C}) = \left\{egin{array}{ll} \lambda_A, & ext{if } \hat{\mathcal{C}}(i) = A, \ 0, & ext{if } \Delta_{ij} = \hat{\Delta}_{ij} ext{ for all } j ext{ where } \hat{\mathcal{C}}(j)
eq A, \end{array}
ight.$$

Loss 0 when we get record i's cluster correct

- ▶ We will specify the loss additiviely $L(\hat{\mathcal{C}}, \mathcal{C}) = \sum_{i=1}^{r} L_i(\hat{\mathcal{C}}, \mathcal{C})$ ▶ Let $\Delta_{ij} = I(\mathcal{C}(i) = \mathcal{C}(j))$, and likewise $\hat{\Delta}_{ij} = I(\hat{\mathcal{C}}(i) = \hat{\mathcal{C}}(j))$

$$L_i(\hat{\mathcal{C}},\mathcal{C}) = \left\{ egin{array}{ll} \lambda_A, & ext{if } \hat{\mathcal{C}}(i) = A, \\ 0, & ext{if } \Delta_{ij} = \hat{\Delta}_{ij} ext{ for all } j ext{ where } \hat{\mathcal{C}}(j)
eq A, \\ \lambda_{\mathrm{FNM}}, & ext{if } \sum_{j
eq i} \hat{\Delta}_{ij} = 0, & \sum_{j
eq i} \Delta_{ij} > 0, \end{array}
ight.$$

- ▶ Loss λ_{FNM} when we have a false non-match
- Deciding that record i does not match any other record when in fact it does

- ▶ We will specify the loss additiviely $L(\hat{C}, C) = \sum_{i=1}^{r} L_i(\hat{C}, C)$ ▶ Let $\Delta_{ij} = I(C(i) = C(j))$, and likewise $\hat{\Delta}_{ij} = I(\hat{C}(i) = \hat{C}(j))$

$$L_i(\hat{\mathcal{C}},\mathcal{C}) = \left\{ \begin{array}{ll} \lambda_A, & \text{if } \hat{\mathcal{C}}(i) = A, \\ 0, & \text{if } \Delta_{ij} = \hat{\Delta}_{ij} \text{ for all } j \text{ where } \hat{\mathcal{C}}(j) \neq A, \\ \lambda_{\text{FNM}}, & \text{if } \sum_{j \neq i} \hat{\Delta}_{ij} = 0, \quad \sum_{j \neq i} \Delta_{ij} > 0, \\ \lambda_{\text{FM1}}, & \text{if } \sum_{j \neq i} \hat{\Delta}_{ij} > 0, \quad \sum_{j \neq i} \Delta_{ij} = 0, \end{array} \right.$$

- ▶ Loss λ_{EM_1} when we have a type 1 false match
- Deciding that record i matches other records when it doesn't actually match any other record

- ▶ We will specify the loss additiviely $L(\hat{C}, C) = \sum_{i=1}^{r} L_i(\hat{C}, C)$ ▶ Let $\Delta_{ij} = I(C(i) = C(j))$, and likewise $\hat{\Delta}_{ij} = I(\hat{C}(i) = \hat{C}(j))$

$$L_i(\hat{\mathcal{C}},\mathcal{C}) = \left\{ \begin{array}{ll} \lambda_A, & \text{if } \hat{\mathcal{C}}(i) = A, \\ 0, & \text{if } \Delta_{ij} = \hat{\Delta}_{ij} \text{ for all } j \text{ where } \hat{\mathcal{C}}(j) \neq A, \\ \lambda_{\text{FNM}}, & \text{if } \sum_{j \neq i} \hat{\Delta}_{ij} = 0, \quad \sum_{j \neq i} \Delta_{ij} > 0, \\ \lambda_{\text{FM1}}, & \text{if } \sum_{j \neq i} \hat{\Delta}_{ij} > 0, \quad \sum_{j \neq i} \Delta_{ij} = 0, \\ \lambda_{\text{FM2}}, & \text{if } \sum_{j \neq i} \hat{\Delta}_{ij} > 0, \quad \sum_{j \neq i} (1 - \hat{\Delta}_{ij}) \Delta_{ij} > 0. \end{array} \right.$$

- Loss $\lambda_{\rm FM2}$ when we have a type 2 false match
- Deciding that record *i* is matched to other records but it does not match all of the records it should be matching

Approximating the Bayes Estimate

- ▶ Minimizing $E[L(\hat{C}, C) \mid \gamma] = \sum_{C} L(\hat{C}, C) P(C \mid \gamma)$ exactly is computationally intractable
 - \triangleright The number of partitions of r records gets very large very fast
- In practice large number of record pairs will have ≈ 0 posterior probability of matching
- \blacktriangleright Break records up into connected components with posterior probability of matching $>\delta$
 - ▶ These connected components will hopefully have $\ll r$ records
- Minimize loss over MCMC samples within each connected component

Simulations

- Our approach worked well in simulations
- Omitted for time, additional slides in appendix

Application: Homicides in Colombia

- Data provided by the Conflict Analysis Resource Center (CERAC)
- ▶ 3 record systems containing information on homicides from 2004 in the Quindio province of Colombia
 - Departamento Administrativo Nacional de Estadistica, DANE (323 records)
 - ▶ Policia Nacional de Colombia, PN (157 records)
 - Instituto Nacional de Medicina Legal y Ciencias Forenses, ML (289 records)
- All 3 systems are believed to be free of duplicates
- Records previously linked by hand, gives us a ground truth

Application: Homicides in Colombia

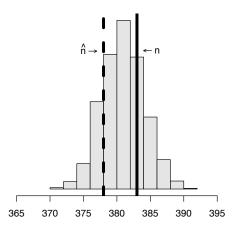
- ► Fields available for all 3 systems:
 - Municipality and date of the homicide
 - ▶ Whether the location of the homicide was urban or rural
 - Age, sex, and marital status of the victim
- Additionally educational status of the victim is available in DANE and ML

Application: Results

- ▶ Full Bayes estimate (not using abstain option):
 - Precision of 93%
 - ▶ How many of the links we made were correct?
 - ▶ Recall of 96%
 - How many of the true links did we get correct?
- Partial Bayes estimate (using abstain option):
 - Precision of 95%
 - How many of the links we made were correct?
 - Abstention rate of 10%
 - For how many of the records did we abstain?

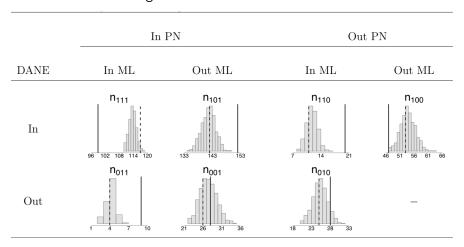
Application: Results

- ▶ True number of entities was n = 383
 - ▶ 95 % credible interval of [376, 388]
 - Estimate (based on full Bayes estimate) of $\hat{n} = 378$



Application: Results

- Dashed lines are estimates (based on full Bayes estimate)
- Solid lines are ground truth



Conclusions

- It always helps to think about data generating processes!
- ▶ Novel prior on partitions (and *K*-partite matchings)
- Loss function with abstain option allows uncertain portions of the partition to be left unresolved

That's All!

- Questions?
- ► Email: aleshing@uw.edu
- ▶ Paper and accompanying R package multilink coming soon
- ▶ Research was supported by NSF grant SES-1852841

Suppose we have samples of the partition \mathcal{C} and parameters of the likelihood $\Phi = \{ \boldsymbol{m}_{kk'}^f, \, \boldsymbol{u}_{kk'}^f \}$, and we'd like to resample record j's cluster assignment, where j is in file \boldsymbol{X}_k . Let \mathcal{C}_{-j} denote the partition with record j removed. Then if $c \in \mathcal{C}_{-j}$ or $c = \emptyset$ (i.e. we're creating a new cluster):

$$\begin{aligned} & p(\text{record } j \text{ gets assigned to } c \mid \mathcal{C}_{-j}, \Phi) \propto \\ & \left\{ \begin{array}{l} p_k(1) \times \left[\frac{(n(\mathcal{C}_{-j})+1)(n_{h(k)}(\mathcal{C}_{-j})+\alpha_{h(k)})}{(n(\mathcal{C}_{-j})+\alpha_0)} \right] \times \left[\frac{p(n(\mathcal{C}_{-j})+1)}{p(n(\mathcal{C}_{-j}))} \right], \text{ if } |c| = 0 \\ & \left[\prod_{i \in c} \mathcal{L}_{ij} \right] \times p_k(1) \times \left[\frac{n_{h_{c,j}}(\mathcal{C}_{-j})+\alpha_{h_{c,j}}}{n_{h_{c,-j}}(\mathcal{C}_{-j})+\alpha_{h_{c,-j}}-1} \right], \text{ if } |c^k| = 0, |c| > 0 \\ & \left[\prod_{i \in c} \mathcal{L}_{ij} \right] \times \left[(|c^k|+1) \frac{p_k(|c^k|+1)}{p_k(|c^k|)} \right], \text{ if } |c^k| > 0 \end{aligned}$$

If |c| = 0, we're creating a new cluster,

 $p(\text{record } j \text{ gets assigned to } c \mid \mathcal{C}_{-j}, \Phi) \propto$

$$\rho_k(1) \times \left[\frac{(n(\mathcal{C}_{-j}) + 1)(n_{h(k)}(\mathcal{C}_{-j}) + \alpha_{h(k)})}{(n(\mathcal{C}_{-j}) + \alpha_0)} \right] \times \left[\frac{p(n(\mathcal{C}_{-j}) + 1)}{p(n(\mathcal{C}_{-j}))} \right]$$

- ▶ $p_k(1)$: prior prob. of having 1 duplicate for a cluster in file X_k
- ▶ $n(C_{-j})$: number of clusters in C_{-j}
- ▶ $n_{h(k)}(C_{-j})$: number of clusters in C_{-j} only containing records from \mathbf{X}_k
- ightharpoonup α ...: prior hyperparameters for contingency table of overlap

If $c \neq \emptyset$ but doesn't contain other records from file \boldsymbol{X}_k ,

 $p(\text{record } j \text{ gets assigned to } c \mid \mathcal{C}_{-j}, \Phi) \propto$

$$\left[\prod_{i\in c}\mathcal{L}_{ij}\right]\times p_k(1)\times \left[\frac{n_{h_{c,j}}(\mathcal{C}_{-j})+\alpha_{h_{c,j}}}{n_{h_{c,-j}}(\mathcal{C}_{-j})+\alpha_{h_{c,-j}}-1}\right]$$

- $ightharpoonup \mathcal{L}_{ij}$: the likelihood contribution for the comparison between record i and record j
- ▶ $n_{h_{c,j}}(C_{-j})$: number of clusters with same overlap as $c \cup \{j\}$ (i.e. the cluster c if you add j to it)
- ▶ $n_{h_{c,-j}}(C_{-j})$: number of clusters with same overlap as c (i.e. the cluster c if you don't add j to it)

If c contains other records from file X_k ,

 $p({
m record}\; j \; {
m gets} \; {
m assigned} \; {
m to} \; c \; | \; \mathcal{C}_{-j}, \Phi) \propto$

$$\left[\prod_{i \in c} \mathcal{L}_{ij}\right] \times \left[(|c^k| + 1) \frac{p_k(|c^k| + 1)}{p_k(|c^k|)} \right]$$

 $ightharpoonup c^k$: the number of records in c from file X_k

Simulations

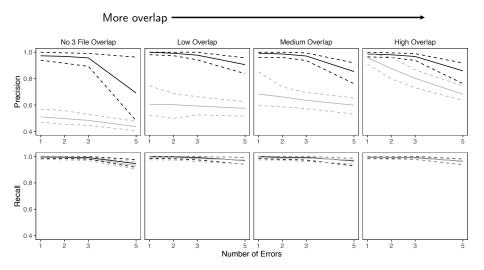
- ▶ 3 files, 500 latent entities
- Varying scenarios of measurement error, overlap, and duplication
- ▶ 100 simulated data sets for each scenario
 - Partitions generated roughly according to our prior
 - Actual records generated using code from group at ANU¹

¹https://dmm.anu.edu.au/geco/index.php

Simulation 1: No Duplicates

- Vary amount of measurement error, overlap between files
- No duplicates, target is K-partite matching
- Comparisons between our comparison based model with
 - Our proposed prior on K-partite matchings
 - ▶ Uniform prior on *K*-partite matchings
- Full Bayes estimates (not using abstain option)

Simulation 1: No Duplicates

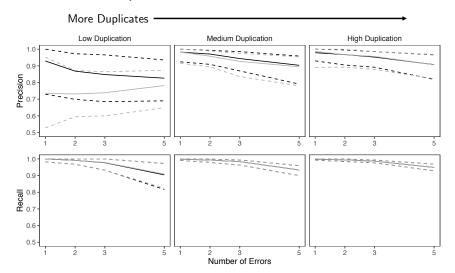


▶ Black is proposed prior, grey is flat prior, solid lines are medians, dotted lines are 2nd and 98th quantiles

Simulation 2: Duplicates

- Vary amount of measurement error, duplication within files
 - Number of duplicates generated from Poisson with varying means, truncated to $\{1, \cdots, 5\}$
- ightharpoonup Fix overlap to be low, $\sim 90\%$ of entities only in one file
- Comparisons between
 - Our model with Poisson(1) prior on duplicates, truncated to $\{1,\cdots,10\}$
 - Model of Sadinle (2014) which uses a flat prior on partitions and treats all records as coming from one file
- Indexing to reduce number of comparisons
- Full Bayes estimates (not using abstain option)

Simulation 2: Duplicates

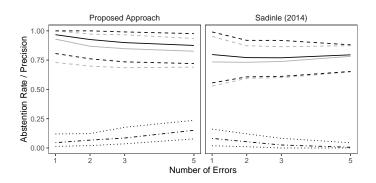


▶ Black is proposed approach, grey is Sadinle (2014), solid lines are medians, dotted lines are 2nd and 98th quantiles

Simulation 3: Duplicates, Abstain Option

- Low Duplication setting from Simulation 2
- ► How does performance change when we use partial Bayes estimates (using the abstain option)?

Simulation 3: Duplicates, Abstain Option



▶ Black are partial estimates, grey are full estimates, solid lines are medians, dotted lines are 2nd and 98th quantiles