	A Statistical Solution		Application to Hurricane Outage Forecasting	
0 0000000	0 000 0000	0 0000 0000		

Locally Optimized Random Forests, a Solution to Forecasting Severe Hurricane Power Outages

Tim Coleman

University of Pittsburgh Department of Statistics

June 5, 2020

		A Statistical Solution		Application to Hurricane Outage Forecasting	
0000 000 00	0000000	0 000 0000	0 0000 0000	0 000 00	

Outline

Introduction Problem Description

A Statistical Solution

Covariate Shift Weighted Random Forest

Simulations

- A Toy Example A High Dimensional Example
- Application to Hurricane Outage Forecasting Conclusions/Where to go from here?

	A Statisti
00	000

Simula 0 0000 0000 Application to Hurricane Outage Forecasting 0 000 00 References

Acknowledgements & Co-Authors

- This is work done during my studies at Los Alamos National Laboratory, under my mentors Kim Kaufeld and Mary Frances Dorn
- Work continued on this project at the University of Pittsburgh with my adviser, Dr. Lucas Mentch.

Introduction	A Statistical Solution		Application to Hurricane Outage Forecasting	
000000	0 000 0000	0 0000 0000	0 000 00	

Introduction

Introduction ○ ●000000	A Statistical Solution o ooo oooo	Simulations 0 0000 0000	Application to Hurricane Outage Forecasting o ooo oo	
Problem Description				

Introduction

- High intensity hurricanes lead to severe power outages, but there are limited historical records of these
- Hurricane Irma was the strongest storm ever seen in the Gulf of Mexico (Cangialosi et al., 2018)
- Weather forecasts performed well, but human impact forecasts underestimate damage

Figure 1: Hurricane Irma - one big storm

Introduction o o o o o o o o o o o o o	A Statistical Solution 0 000 0000	Simulations o oooo oooo	Application to Hurricane Outage Forecasting o ooo oo	
Parking Decembring				

For county *i* in a given hurricane, the ORNL (2018) EAGLE-I database provides 15 minute outage counts {*O_{i,t}*}, which we summarise using the "maximum 2-hour sustained outages", given by

$$Y_i = \log_{10} \left(\max_t \min_k \{ O_{i,k} : k \in [t, t+8) \} \right).$$

The fundamental task here is to forecast Y_i accurately, and if possible, provide prediction intervals.

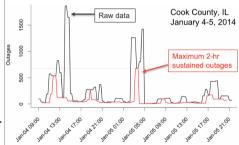


Figure 2: Time series $O_{i,k}$ with Y_i highligted in red.

Introduction	A Statistical Solution		Application to Hurricane Outage Forecasting	
o oo∙oooo	0 000 0000	0 0000 0000		
Problem Description				

- Much of the existing work is local in nature, uses local power grid information to train random forests and other ML methods (Wanik et al., 2015; Liu et al., 2005; Nateghi et al., 2014).
- This information isn't standardized/regularly collected nationally, so any national forecasting method cannot rely on this information.

Introduction	A Statistical Solution		Application to Hurricane Outage Forecasting	
o oo∙oooo	0 000 0000	0 0000 0000		
Problem Description				

- Much of the existing work is local in nature, uses local power grid information to train random forests and other ML methods (Wanik et al., 2015; Liu et al., 2005; Nateghi et al., 2014).
- This information isn't standardized/regularly collected nationally, so any national forecasting method cannot rely on this information.
- We use three sources of information:

Introduction	A Statistical Solution		Application to Hurricane Outage Forecasting	
o oo●oooo	0 000 0000	0 0000 0000		
Problem Description				

- Much of the existing work is local in nature, uses local power grid information to train random forests and other ML methods (Wanik et al., 2015; Liu et al., 2005; Nateghi et al., 2014).
- This information isn't standardized/regularly collected nationally, so any national forecasting method cannot rely on this information.
- We use three sources of information:
 - 1. Storm characteristics, such as wind speed, precipitation
 - 2. Environmental characteristics, such as drought index, land cover
 - 3. Socio-economic information about each county

Introduction	A Statistical Solution		Application to Hurricane Outage Forecasting	
0 00●0000	0 000 0000	0 0000 0000		
Problem Description				

- Much of the existing work is local in nature, uses local power grid information to train random forests and other ML methods (Wanik et al., 2015; Liu et al., 2005; Nateghi et al., 2014).
- This information isn't standardized/regularly collected nationally, so any national forecasting method cannot rely on this information.
- We use three sources of information:
 - 1. Storm characteristics, such as wind speed, precipitation
 - 2. Environmental characteristics, such as drought index, land cover
 - 3. Socio-economic information about each county
- ► For each storm *S*, we get natural training/test splits

 $\mathcal{D}_{S} = \{ (X_{i}, Y_{i}) : \text{Observation } i \text{ is not from storm } S \}$ $\mathcal{T}_{S} = \{ (X_{i}, Y_{i}) : \text{Observation } i \text{ is from storm } S \}$

Introduction	A Statistical Solution		Application to Hurricane Outage Forecasting	
_ 000●000	0 000 0000	0 0000 0000		
Problem Description				

Random Forest Definitions

Random forest predictions are weighted averages of the training responses, i.e.

$$RF(\boldsymbol{x}; \mathcal{D}) = \sum_{i=1}^{n} \underbrace{\mathbb{E}_{\xi} \left[\frac{I(\boldsymbol{X}_{i} \in A_{\xi}^{*}(\boldsymbol{x}))}{\sum_{j=1}^{n} I(\boldsymbol{X}_{j} \in A_{\xi}^{*}(\boldsymbol{x}))} \right]}_{r_{i}(\boldsymbol{x}; \mathcal{D})} Y_{i}$$

Meinshausen (2006) noted that the weights used for the empirical mean could be used instead in a local empirical distribution function, namely

$$\hat{F}(y|\mathbf{X}=\mathbf{x}) = \sum_{i=1}^{n} r_i(\mathbf{x}; \mathcal{D}) I(Y_i \le y)$$

where the goal is to estimate $F(y|X = x) = P(Y \le y|X = x)$.

Introduction	A Statistical Solution		Application to Hurricane Outage Forecasting	
° °°°°°	0 000 0000	0 0000 0000		
Problem Description				

Problems with this Approach

Below shows results of a RF with hyper-parameters selected by cross-validation for each storm.

Storm	mtry	nodesize	MAE	RMSE	Covg	IntWidth
Matthew-2016	50	5	0.6247	0.7840	0.9580	3.3696
Nate-2017	40	5	0.6694	0.8069	0.9524	3.2204
Harvey-2017	50	5	0.7471	0.9020	0.8923	3.0574
Arthur-2014	45	5	0.8462	1.0325	0.7728	2.7799
Sandy-2012	40	10	0.9797	1.2199	0.6562	2.8495
Irma-2017	45	5	1.1871	1.4056	0.5350	3.0051

Introduction	A Statistical Solution		Application to Hurricane Outage Forecasting	
0 0000●00	0 000 0000	0 0000 0000		
Problem Description				

Problems with this Approach

Below shows results of a RF with hyper-parameters selected by cross-validation for each storm.

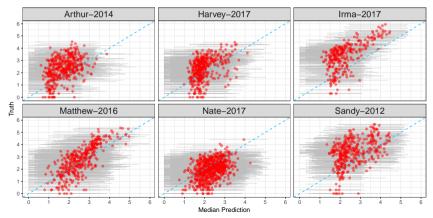
Storm	mtry	nodesize	MAE	RMSE	Covg	IntWidth
Matthew-2016	50	5	0.6247	0.7840	0.9580	3.3696
Nate-2017	40	5	0.6694	0.8069	0.9524	3.2204
Harvey-2017	50	5	0.7471	0.9020	0.8923	3.0574
Arthur-2014	45	5	0.8462	1.0325	0.7728	2.7799
Sandy-2012	40	10	0.9797	1.2199	0.6562	2.8495
Irma-2017	45	5	1.1871	1.4056	0.5350	3.0051

Coverage is not close to nominal level for three of six storms - and error metrics are worst on most severe storms.

Introduction	A Statistical Solution		Application to Hurricane Outage Forecasting	
o 00000●0	0 000 0000	0 0000 0000		
Problem Description				

Problems with this Approach

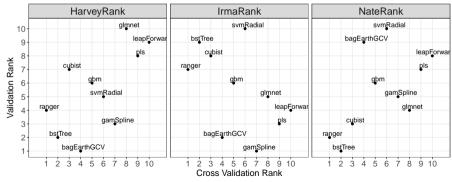
The regression forests also fail the eye test when plotting fitted vs predicted values.



Introduction	A Statistical Solution		Application to Hurricane Outage Forecasting	
0 000000	0 000 0000	0 0000 0000	0 000 00	
Problem Description				

Model Selection Fails

▶ Unfortunately, standard cross validation fails, especially for severe storms.



RMSE Rankings Cross Validation versus Storm Validation

The CV rankings are not predictive of the validation rankings for Irma.

	A Statistical Solution		Application to Hurricane Outage Forecasting	
0 0000000	000 0000	0 0000 0000		

A Statistical Solution

Introduction o ooooooo	A Statistical Solution ○ ● ○ ○ ○ ○ ○	Simulations 0 0000 0000	Application to Hurricane Outage Forecasting o oo oo	
Covariate Shift				

Violations in Assumptions

Essentially, the historical record (training data) and incoming storms (validation data) have different distributions, P₁ and P₂, so that

$$\mathbb{E}_{(\boldsymbol{X},Y)\sim P_1}L(\hat{f}(\boldsymbol{X}),Y)\neq\mathbb{E}_{(\boldsymbol{X},Y)\sim P_2}L(\hat{f}(\boldsymbol{X}),Y).$$

where \hat{f} is an estimated regression function and $L(\cdot)$ is a loss function

In general, we will observe the covariates associated with a particular storm before the impacts on the power grid are realized. Thus, X_{test} is available at training time.

Introduction o ooooooo	A Statistical Solution o o o o o o o o o o o o o	Simulations o oooo oooo	Application to Hurricane Outage Forecasting o ooo oo	
Covariate Shift				

Modeling the Violation

- Thus, if we assume that there exists a common collection of conditional distributions P(Y|X) between P₁ and P₂, we have a hope of making our training procedure adapt to the distributional shift.
- ► Formally, we assume that

$$P_1(\mathbf{X}, Y) = P(Y|\mathbf{X})P_1^*(\mathbf{X})$$

$$P_2(\mathbf{X}, Y) = P(Y|\mathbf{X})P_2^*(\mathbf{X})$$
(1)

Equation 1 is commonly referred to as the *covariate shift* model (Shimodaira, 2000; Sugiyama and Müller, 2005; Sugiyama et al., 2007).

	A Statistical Solution		Application to Hurricane Outage Forecasting	
0 0000000	0 00● 0000	0 0000 0000		
Covariate Shift				

Estimating *w*

- ► Kanamori et al. (2009) developed a means of estimating $w(\mathbf{x})$ via kernel regression assume that $w(\mathbf{x}) = \sum_{l=1}^{n_{\text{test}}} \alpha_l K_{\sigma}(\mathbf{x}, \mathbf{x}_l)$ where $K_{\sigma}(\cdot, \cdot)$ is a Gaussian kernel with bandwidth σ , and \mathbf{x}_l is a point in the test set.
- The bandwidth σ is fit through cross-validation, and then regularized regression is performed to estimate α_l.
- Other methods include minimizing the KL divergence between P_{test} and $\hat{P}_{\text{test}} = P_{\text{train}}\hat{w}$ (Sugiyama et al., 2008).
- We additionally regularize the weights, by setting $w_{\gamma}(\mathbf{x}) = w(\mathbf{x})^{\gamma}$ for some $\gamma \in (0, 1)$.

	A Statistical Solution		Application to Hurricane Outage Forecasting	
0 0000000	0 000	0		
		0000	00	
Weighted Random Fe	orest			

Using Weights in a Random Forest

- Regression forest makes splits by recursively minimizing empirical variances, and makes predictions according to localized empirical expectations.
- ▶ Let A_0 be a parent node, and let $A_L = \{X \in A : X^{(j)} \le z\}, A_R = A \setminus A_L$. Then, the CART criterion for a candidate split dimension *j* and point *z* is given as

$$CART(j,z) = \frac{1}{N_n(A)} \sum_{i=1}^n (Y_i - \bar{Y}_A)^2 I(\mathbf{X}_i \in A) - \frac{1}{N_n(A)} \sum_{i=1}^n (Y_i - \bar{Y}_{A_L} I(X_i^{(j)} \le z) - \bar{Y}_{A_R} I(X_i^{(j)} > z))^2 I(\mathbf{X}_i \in A)$$
(2)

where $\overline{Y}_A = \frac{1}{N_n(A)} \sum Y_i I(X_i \in A)$.

	A Statistical Solution		Application to Hurricane Outage Forecasting	
0 0000000		0 0000 0000		
Weighted Pandom For	toot			

Using Weights in a Random Forest

We use a weighted CART criterion, given by

$$CART^{w}(j,z) = \frac{1}{\sum_{X_{j} \in A} w_{j}} \sum_{i=1}^{n} w_{i}(Y_{i} - \tilde{Y}_{A})^{2} I(X_{i} \in A) - \frac{1}{\sum_{X_{j} \in A} w_{j}} \sum_{i=1}^{n} w_{i}(Y_{i} - \tilde{Y}_{A_{L}} I(X_{i}^{(j)} < z) - \tilde{Y}_{A_{R}} I(X_{i}^{(j)} \ge z))^{2} I(X_{i} \in A)$$
(3)
and $\tilde{Y}_{A} = \frac{1}{\sum_{X_{i} \in A} w_{j}} \sum w_{i} Y_{i} I(X_{i} \in A).$

- Iteratively minimize this new quantity and then use the weighted means as predictions, generating trees $\{T_w(X_i, \xi_k)\}_{k=1}^B$.
- Similar in spirit to *case specific* random forests, proposed by Xu et al. (2016), but they rely on a weighted bootstrap, and only works for a single test point.

	A Statistical Solution		Application to Hurricane Outage Forecasting	
0 0000000	0	0		
0000000	000 0000	0000 0000	000 00	
Weighted Random F	orest			

Weighted Random Forests

- An advantage of bagged models is the ability to use the *out-of-bag* error as an estimate of generalization error no need to perform exhaustive data splitting
- For each (X_i, Y_i) in the training data, let $\mathcal{B}_i \subset \{1, ..., B\}$ be the indices where (X_i, Y_i) was not included in the resample. Then,

$$OOB_{m,B} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{|\mathcal{B}_i|} \sum_{k \in \mathcal{B}_i} T(\mathbf{X}_i; \xi_k, \mathcal{D}_{-i}) - Y_i \right)^2.$$

▶ Because $\lim_{B\to\infty} |\mathcal{B}_i| = \infty$ a.s., the infinite forest version of $OOB_{m,B}$ is almost surely equal to the leave one out CV (LOOCV) error, which is defined as

$$LOOCV_{RF} = \frac{1}{n} \sum_{i=1}^{n} \left(\mathbb{E}_{\xi} T(X_i; \xi, \mathcal{D}_{-i}) - Y_i \right)^2.$$

	A Statistical Solution		Application to Hurricane Outage Forecasting	
000000	000	0000	000	
	0000			
Weighted Random E	oract			

Weighted Loss Estimates

▶ We can compute a weighted version, for the weighted tree model

$$OOB_{m,B}^{w} = \frac{1}{\sum_{j=1}^{n} w_j} \sum_{i=1}^{n} w_i \left(\frac{1}{|\mathcal{B}_i|} \sum_{k \in \mathcal{B}_i} T_w(\mathbf{X}_i; \xi_k, \mathcal{D}_{-i}) - Y_i \right)^2.$$

- Sugiyama et al. (2007) showed that the importance-weighted LOOCV is approximately unbiased for the generalization error under P₂.
- ▶ Thus, we see that

$$\mathbb{E}_{P_1}OOB_{m,B}^{\boldsymbol{w}} = \mathbb{E}_{P_1}LOOCV_{RF}^{\boldsymbol{w}} = \mathbb{E}_{\mathcal{D}_{n-1},(\boldsymbol{X},\boldsymbol{Y})\sim P_2}\left(\mathbb{E}_{\boldsymbol{\xi}}(\boldsymbol{X};\mathcal{D}_{n-1})-\boldsymbol{Y}\right)^2,$$

and so we can use the weighted out of bag error as a measure of model performance.

0 0 0 0000000 000 0000 000 0000 0000 0		A Statistical Solution	Simulations	Application to Hurricane Outage Forecasting	
	0 0000000				

Simulations

	A Statistical Solution	Simulations	Application to Hurricane Outage Forecasting	
0 0000000	000	0 0000	000	
0000000	000	0000	000 00	
A Tax Example				

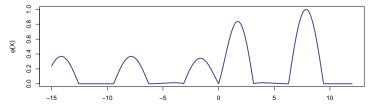
A Toy Regression Example

Consider the univariate data model

$$Y|X \sim \mathcal{N}(\varphi(X), 0.5)$$

$$\varphi(X) = \max\left\{\frac{e^X}{1 + e^X}\sin(X), \frac{e^{-X}}{1 + e^{-X}}\sin(-X)\right\}$$

• $\varphi(X)$ has a lot of "local" features - intrinsically difficult to extrapolate here



Introduction 0 0000000	A Statistical Solution o ooo oooo	Simulations ○ ○●○○ ○○○○	Application to Hurricane Outage Forecasting o ooo oo	
A Toy Example				

A Toy Regression Example

We simulate a covariate shift by introducing two different training and testing distributions for X

$$P_{ ext{train}} = \mathcal{N} \left(-4, 3.5^2
ight)$$

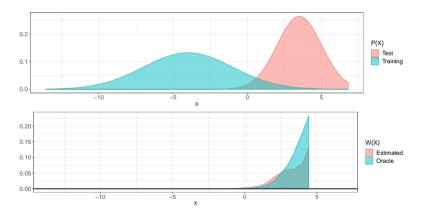
 $P_{ ext{test}} = \mathcal{N} \left(3.5, 1.5^2
ight)$

- Training distribution is dispersed, but test data is centered around a particular region
- ► We compare 3 models:
 - A random forest from the ranger package as a baseline
 - A weighted forest, where the weights are learned with the method of Kanamori et al. (2009)

• A weighted forest, where the weights are the oracle weights - i.e. $w(x) \propto \frac{\phi(\frac{x-3.5}{2.5})}{\phi(\frac{x+4}{2})}$

	A Statistical Solution	Simulations	Application to Hurricane Outage Forecasting	
0 0000000	0 000 0000	0 00●0 0000		
A Toy Example				

Weights Estimation ► Outputs look like



Introduction o ooooooo	A Statistical Solution 0 000 0000	Simulations ○ ○○○● ○○○○	Application to Hurricane Outage Forecasting o ooo oo
A Toy Example			

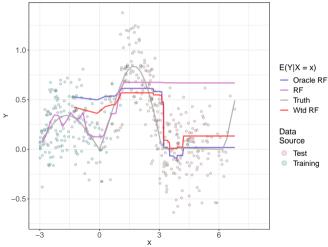
RF

Truth

Test

Training

Regression Estimation



- ranger model fails to pick up on the local behavior around which P_{test} is centered Error metrics for this run are shown below Model RMSE 0.3407 ranger
- Weighted 0.0976 **Oracle Weights** 0.0939

	A Statistical Solution	Simulations	Application to Hurricane Outage Forecasting			
		0000	00			
A High Dimensional Example						

A More Severe Shift

Now we consider a collection of regression functions that have medium dimensional (*p* = 31) inputs:

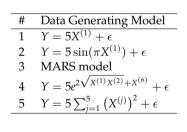
 $\begin{array}{c|ccc} \hline \text{Model \#} & \text{Data Generating Model} \\ \hline 1 & Y = 5X^{(1)} + \epsilon \\ 2 & Y = 5\sin(\pi X^{(1)}) + \epsilon \\ 3 & Y = \underbrace{10\sin(\pi X^{(1)}X^{(2)}) + 20(X^{(3)} - 0.5)^2 + 10X^{(4)} + 5X^{(5)} + \epsilon}_{\text{MARS model (Friedman, 1991)}} \\ 4 & Y = 5e^{2\sqrt{X^{(1)}X^{(2)}} + X^{(6)}} + \epsilon \\ 5 & Y = 5\sum_{j=1}^{5} (X^{(j)})^2 + \epsilon \end{array}$

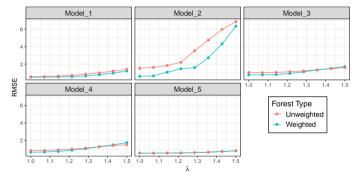
- In each case, ϵ is mean 0, Gaussian noise with $\mathbb{E}(\epsilon^2) = 0.25$.
- We set $\alpha_1 = [\lambda^1, ..., \lambda^6]$ (the training distribution) and $\alpha_2 = [\lambda^6, ..., \lambda^1]$ (the test distribution), so that λ controls the magnitude of the covariate shift.

	A Statistical Solution	Simulations	Application to Hurricane Outage Forecasting	
000000	000	0000	000	
		0000		

A High Dimensional Example

RMSE Results

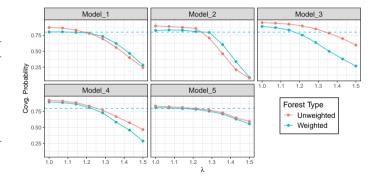




Introduction o ooooooo	A Statistical Solution o ooo oooo	Simulations ° ° ° ° ° ° ° ° ° ° ° ° °	Application to Hurricane Outage Forecasting o ooo oo	

A High Dimensional Example

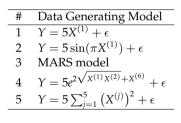
Coverage Percentage Results

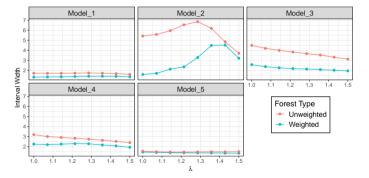


	A Statistical Solution	Simulations	Application to Hurricane Outage Forecasting	
0000000	000	0000	000	
		0000		

A High Dimensional Example

Interval Width





	A Statistical Solution		Application to Hurricane Outage Forecasting	
0 0000000	0 000 0000	0 0000 0000		

Application to Hurricane Outage Forecasting

	A Statistical Solution		Application to Hurricane Outage Forecasting	
0	0	0		
0000000	0000	0000	00	

Returning to the Original Problem

- Recall the goal is to generate more accurate forecasts for the hurricane outages.
- Now we apply the weighted procedure for the six storms presented in the introduction.
- For comparison, we also again train an unweighted random forest. For the unweighted forest, we tune over the mtry parameter, and for the weighted forest we tune over mtry and the γ weight regularizer.
- To assess performance across regression/quantile regression, we introduce the following "score"

Score =
$$\left(\frac{1}{MAE} + \frac{1}{RMSE} + \frac{4}{IntWidth}\right) \frac{Covg}{1-\alpha}$$
 (4)

Introduction	A Statistical Solution	Simulations	Application to Hurricane Outage Forecasting	
0	0	o	○	
0000000	000	0000	●●○	
	0000	0000	00	

Hurricane Results

Storm	Model	RMSE	MAE	Covg	Interval Width	Score
Harvey-2017	Weighted	0.9376	0.7307	0.8038	2.5425	3.5801
Harvey-2017	Unweighted	0.9089	0.7541	0.7847	2.4619	3.5321
Irma-2017	Weighted	1.3855	1.1651	0.3916	2.3906	1.4155
Irma-2017	Unweighted	1.4052	1.1775	0.3706	2.4064	1.3273
Sandy-2012	Weighted	1.2320	1.0159	0.5677	2.2663	2.2462
Sandy-2012	Unweighted	1.2148	0.9933	0.5521	2.1930	2.2414
Nate-2017	Weighted	0.7859	0.6839	0.8860	2.7199	4.1400
Nate-2017	Unweighted	0.8133	0.6682	0.8687	2.4809	4.1874
Matthew-2016	Weighted	0.7994	0.6292	0.8635	2.5532	4.2282
Matthew-2016	Unweighted	0.7848	0.6275	0.8950	2.6813	4.3355
Arthur-2014	Weighted	0.9966	0.7942	0.7213	2.4303	3.1325
Arthur-2014	Unweighted	1.0637	0.8580	0.6698	2.2712	2.8776

Table 1: Model performance by storm, with weighted and unweighted storms fitted. Bolded values represent which model attained the higher "Score", as defined earlier.

	A Statistical Solution		Application to Hurricane Outage Forecasting	
0 0000000	0 000 0000	0 0000 0000		

Tuning the Models

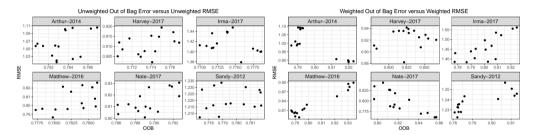


Figure 3: Out of bag error versus holdout RMSE. Left: Results for the unweighted forest (repeated five times per mtry value, for visual consistency with the right figure). Right: Results for the weighted forest.

Introduction o ooooooo	A Statistical Solution o ooo oooo	Simulations 0 0000 0000	Application to Hurricane Outage Forecasting ○ ○○○ ●○		
Conclusions/Where to go from here?					

Challenges in High Dimensions

- In simulations, we show definite model improvements in "medium" sized shifts.
- In our motivating problem, we demonstrate modest improvements on several storms, including severe storms such as Irma. However, the improvements do not reach the threshold of no shift.
- It's possible that the covariate shift assumption is violated, that is, P(Y|X) is also different for particularly extreme storms.

	A Statistical Solution		Application to Hurricane Outage Forecasting		
0000000	000	0000	000		
			00		
Conclusions/Where to go from here?					

Thanks!

	A Statistical Solution		Application to Hurricane Outage Forecasting	References
0 0000000	0 000 0000	0 0000 0000		

References I

- Cangialosi, J. P., Latto, A. S., and Berg, R. (2018). Hurricane irma. In National Hurricane Center Tropical Cyclone Report.
- Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics, pages 1-67.
- Kanamori, T., Hido, S., and Sugiyama, M. (2009). A least-squares approach to direct importance estimation. Journal of Machine Learning Research, 10(Jul):1391–1445.
- Liu, H., Davidson, R. A., Rosowsky, D. V., and Stedinger, J. R. (2005). Negative binomial regression of electric power outages in hurricanes. Journal of infrastructure systems, 11(4):258–267.
- Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7(Jun):983–999.
- Nateghi, R., Guikema, S. D., and Quiring, S. M. (2014). Forecasting hurricane-induced power outage durations. Natural hazards, 74(3):1795-1811.
- ORNL (2018). Eagle-i data. data retrieved from DoE website, https://eagle-i.doe.gov/.
- Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of statistical planning and inference, 90(2):227–244.
- Sugiyama, M., Krauledat, M., and MÄžller, K.-R. (2007). Covariate shift adaptation by importance weighted cross validation. Journal of Machine Learning Research, 8(May):985–1005.
- Sugiyama, M. and Müller, K.-R. (2005). Input-dependent estimation of generalization error under covariate shift. Statistics & Decisions, 23(4/2005):249–279.
- Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P. V., and Kawanabe, M. (2008). Direct importance estimation with model selection and its application to covariate shift adaptation. In Advances in neural information processing systems, pages 1433–1440.
- Wanik, D., Anagnostou, E., Hartman, B., Frediani, M., and Astitha, M. (2015). Storm outage modeling for an electric distribution network in northeastern usa. *Natural Hazards*, 79(2):1359–1384.
- Xu, R., Nettleton, D., and Nordman, D. J. (2016). Case-specific random forests. Journal of Computational and Graphical Statistics, 25(1):49-65.