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Problem Description

Introduction

I High intensity hurricanes lead to severe
power outages, but there are limited
historical records of these

I Hurricane Irma was the strongest storm
ever seen in the Gulf of Mexico
(Cangialosi et al., 2018)

I Weather forecasts performed well, but
human impact forecasts underestimate
damage

Figure 1: Hurricane Irma - one big
storm
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Problem Description

Forecasting Power Outages
I For county i in a given hurricane, the

ORNL (2018) EAGLE-I database
provides 15 minute outage counts
{Oi,t}, which we summarise using the
”maximum 2-hour sustained outages”,
given by

Yi = log10
(

max
t

min
k
{Oi,k : k ∈ [t, t+8)}

)
.

I The fundamental task here is to
forecast Yi accurately, and if possible,
provide prediction intervals.

Figure 2: Time series Oi,k with Yi
highligted in red.
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Problem Description

Forecasting Power Outages
I Much of the existing work is local in nature, uses local power grid

information to train random forests and other ML methods (Wanik et al.,
2015; Liu et al., 2005; Nateghi et al., 2014).

I This information isn’t standardized/regularly collected nationally, so any
national forecasting method cannot rely on this information.

I We use three sources of information:
1. Storm characteristics, such as wind speed, precipitation
2. Environmental characteristics, such as drought index, land cover
3. Socio-economic information about each county

I For each storm S, we get natural training/test splits

DS = {(Xi,Yi) : Observation i is not from storm S}
TS = {(Xi,Yi) : Observation i is from storm S}
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Problem Description

Random Forest Definitions
I Random forest predictions are weighted averages of the training responses,

i.e.

RF(x;D) =

n∑
i=1

Eξ

[
I(Xi ∈ A∗ξ(x))∑n
j=1 I(Xj ∈ A∗ξ(x))

]
︸ ︷︷ ︸

ri(x;D)

Yi.

I Meinshausen (2006) noted that the weights used for the empirical mean could
be used instead in a local empirical distribution function, namely

F̂(y|X = x) =
n∑

i=1

ri(x;D)I(Yi ≤ y)

where the goal is to estimate F(y|X = x) = P(Y ≤ y|X = x).
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Problem Description

Problems with this Approach

I Below shows results of a RF with hyper-parameters selected by
cross-validation for each storm.

Storm mtry nodesize MAE RMSE Covg IntWidth
Matthew-2016 50 5 0.6247 0.7840 0.9580 3.3696
Nate-2017 40 5 0.6694 0.8069 0.9524 3.2204
Harvey-2017 50 5 0.7471 0.9020 0.8923 3.0574
Arthur-2014 45 5 0.8462 1.0325 0.7728 2.7799
Sandy-2012 40 10 0.9797 1.2199 0.6562 2.8495
Irma-2017 45 5 1.1871 1.4056 0.5350 3.0051

I Coverage is not close to nominal level for three of six storms - and error
metrics are worst on most severe storms.
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Problem Description

Problems with this Approach
I The regression forests also fail the eye test when plotting fitted vs predicted

values.

Matthew−2016 Nate−2017 Sandy−2012
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Problem Description

Model Selection Fails
I Unfortunately, standard cross validation fails, especially for severe storms.
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I The CV rankings are not predictive of the validation rankings for Irma.
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A Statistical Solution
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Covariate Shift

Violations in Assumptions

I Essentially, the historical record (training data) and incoming storms
(validation data) have different distributions, P1 and P2, so that

E(X,Y)∼P1L(f̂ (X),Y) 6= E(X,Y)∼P2L(f̂ (X),Y).

where f̂ is an estimated regression function and L(·) is a loss function
I In general, we will observe the covariates associated with a particular storm

before the impacts on the power grid are realized. Thus, Xtest is available at
training time.
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Covariate Shift

Modeling the Violation

I Thus, if we assume that there exists a common collection of conditional
distributions P(Y|X) between P1 and P2, we have a hope of making our
training procedure adapt to the distributional shift.

I Formally, we assume that

P1(X,Y) = P(Y|X)P∗1(X)

P2(X,Y) = P(Y|X)P∗2(X)
(1)

I Equation 1 is commonly referred to as the covariate shift model (Shimodaira,
2000; Sugiyama and Müller, 2005; Sugiyama et al., 2007).
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Covariate Shift

Estimating w

I Kanamori et al. (2009) developed a means of estimating w(x) via kernel
regression - assume that w(x) =

∑ntest
l=1 αlKσ(x, xl) where Kσ(·, ·) is a Gaussian

kernel with bandwidth σ, and xl is a point in the test set.
I The bandwidth σ is fit through cross-validation, and then regularized

regression is performed to estimate αl.
I Other methods include minimizing the KL divergence between Ptest and

P̂test = Ptrainŵ (Sugiyama et al., 2008).
I We additionally regularize the weights, by setting wγ(x) = w(x)γ for some
γ ∈ (0, 1).
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Weighted Random Forest

Using Weights in a Random Forest

I Regression forest makes splits by recursively minimizing empirical variances,
and makes predictions according to localized empirical expectations.

I Let A0 be a parent node, and let AL = {X ∈ A : X(j) ≤ z}, AR = A \ AL. Then,
the CART criterion for a candidate split dimension j and point z is given as

CART(j, z) =
1

Nn(A)

n∑
i=1

(Yi − ȲA)2I(Xi ∈ A) −

1
Nn(A)

n∑
i=1

(
Yi − ȲAL I(X(j)

i ≤ z)− ȲAR I(X(j)
i > z)

)2I(Xi ∈ A) (2)

where ȲA = 1
Nn(A)

∑
YiI(Xi ∈ A).
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Weighted Random Forest

Using Weights in a Random Forest
I We use a weighted CART criterion, given by

CARTw(j, z) =
1∑

Xj∈A wj

n∑
i=1

wi(Yi − ỸA)2I(Xi ∈ A) −

1∑
Xj∈A wj

n∑
i=1

wi
(
Yi − ỸAL I(X(j)

i < z)− ỸAR I(X(j)
i ≥ z)

)2I(Xi ∈ A) (3)

and ỸA = 1∑
Xj∈A wj

∑
wiYiI(Xi ∈ A).

I Iteratively minimize this new quantity and then use the weighted means as
predictions, generating trees {Tw(Xi, ξk)}B

k=1.
I Similar in spirit to case specific random forests, proposed by Xu et al. (2016),

but they rely on a weighted bootstrap, and only works for a single test point.
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Weighted Random Forest

Weighted Random Forests
I An advantage of bagged models is the ability to use the out-of-bag error as an

estimate of generalization error - no need to perform exhaustive data splitting
I For each (Xi,Yi) in the training data, let Bi ⊂ {1, ...,B} be the indices where

(Xi,Yi) was not included in the resample. Then,

OOBm,B =
1
n

n∑
i=1

(
1
|Bi|

∑
k∈Bi

T(Xi; ξk,D−i)− Yi

)2

.

I Because limB→∞ |Bi| =∞ a.s., the infinite forest version of OOBm,B is almost
surely equal to the leave one out CV (LOOCV) error, which is defined as

LOOCVRF =
1
n

n∑
i=1

(EξT(Xi; ξ,D−i)− Yi)
2 .
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Weighted Random Forest

Weighted Loss Estimates
I We can compute a weighted version, for the weighted tree model

OOBw
m,B =

1∑n
j=1 wj

n∑
i=1

wi

(
1
|Bi|

∑
k∈Bi

Tw(Xi; ξk,D−i)− Yi

)2

.

I Sugiyama et al. (2007) showed that the importance-weighted LOOCV is
approximately unbiased for the generalization error under P2.

I Thus, we see that

EP1OOBw
m,B = EP1LOOCVw

RF = EDn−1,(X,Y)∼P2 (Eξ(X;Dn−1)− Y)2 ,

and so we can use the weighted out of bag error as a measure of model
performance.
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Simulations
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A Toy Example

A Toy Regression Example
I Consider the univariate data model

Y|X ∼ N (ϕ(X), 0.5)

ϕ(X) = max

{
eX

1 + eX sin(X),
e−X

1 + e−X sin(−X)

}
I ϕ(X) has a lot of ”local” features - intrinsically difficult to extrapolate here
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A Toy Example

A Toy Regression Example
I We simulate a covariate shift by introducing two different training and testing

distributions for X

Ptrain = N
(
−4, 3.52)

Ptest = N
(
3.5, 1.52)

I Training distribution is dispersed, but test data is centered around a
particular region

I We compare 3 models:
I A random forest from the ranger package as a baseline
I A weighted forest, where the weights are learned with the method of Kanamori

et al. (2009)
I A weighted forest, where the weights are the oracle weights - i.e. w(x) ∝ φ( x−3.5

1.5 )
φ( x+4

3.5 )
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A Toy Example

Weights Estimation
I Outputs look like
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A Toy Example

Regression Estimation

−0.5

0.0
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1.0
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X
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E(Y|X = x)
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RF
Truth
Wtd RF

Data
Source

Test
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I ranger model
fails to pick up
on the local
behavior around
which Ptest is
centered

I Error metrics for
this run are
shown below

Model RMSE
ranger 0.3407
Weighted 0.0976
Oracle Weights 0.0939
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A High Dimensional Example

A More Severe Shift
I Now we consider a collection of regression functions that have medium

dimensional (p = 31) inputs:
Model # Data Generating Model

1 Y = 5X(1) + ε

2 Y = 5 sin(πX(1)) + ε

3 Y = 10 sin(πX(1)X(2)) + 20(X(3) − 0.5)2 + 10X(4) + 5X(5) + ε︸ ︷︷ ︸
MARS model (Friedman, 1991)

4 Y = 5e2
√

X(1)X(2)+X(6)
+ ε

5 Y = 5
∑5

j=1

(
X(j))2

+ ε

I In each case, ε is mean 0, Gaussian noise with E(ε2) = 0.25.
I We set α1 = [λ1, ..., λ6] (the training distribution) and α2 = [λ6, ..., λ1] (the test

distribution), so that λ controls the magnitude of the covariate shift.
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A High Dimensional Example

RMSE Results

# Data Generating Model
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A High Dimensional Example

Coverage Percentage Results
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A High Dimensional Example

Interval Width
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Application to Hurricane Outage Forecasting
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Returning to the Original Problem
I Recall the goal is to generate more accurate forecasts for the hurricane

outages.
I Now we apply the weighted procedure for the six storms presented in the

introduction.
I For comparison, we also again train an unweighted random forest. For the

unweighted forest, we tune over the mtry parameter, and for the weighted
forest we tune over mtry and the γ weight regularizer.

I To assess performance across regression/quantile regression, we introduce
the following ”score”

Score =

(
1

MAE
+

1
RMSE

+
4

IntWidth

)
Covg
1− α

(4)
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Hurricane Results
Storm Model RMSE MAE Covg Interval Width Score

Harvey-2017 Weighted 0.9376 0.7307 0.8038 2.5425 3.5801
Harvey-2017 Unweighted 0.9089 0.7541 0.7847 2.4619 3.5321

Irma-2017 Weighted 1.3855 1.1651 0.3916 2.3906 1.4155
Irma-2017 Unweighted 1.4052 1.1775 0.3706 2.4064 1.3273

Sandy-2012 Weighted 1.2320 1.0159 0.5677 2.2663 2.2462
Sandy-2012 Unweighted 1.2148 0.9933 0.5521 2.1930 2.2414
Nate-2017 Weighted 0.7859 0.6839 0.8860 2.7199 4.1400
Nate-2017 Unweighted 0.8133 0.6682 0.8687 2.4809 4.1874

Matthew-2016 Weighted 0.7994 0.6292 0.8635 2.5532 4.2282
Matthew-2016 Unweighted 0.7848 0.6275 0.8950 2.6813 4.3355
Arthur-2014 Weighted 0.9966 0.7942 0.7213 2.4303 3.1325
Arthur-2014 Unweighted 1.0637 0.8580 0.6698 2.2712 2.8776

Table 1: Model performance by storm, with weighted and unweighted storms fitted.
Bolded values represent which model attained the higher “Score”, as defined earlier.
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Tuning the Models
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Figure 3: Out of bag error versus holdout RMSE. Left: Results for the unweighted forest
(repeated five times per mtry value, for visual consistency with the right figure). Right:
Results for the weighted forest.
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Conclusions/Where to go from here?

Challenges in High Dimensions

I In simulations, we show definite model improvements in ”medium” sized
shifts.

I In our motivating problem, we demonstrate modest improvements on several
storms, including severe storms such as Irma. However, the improvements
do not reach the threshold of no shift.

I It’s possible that the covariate shift assumption is violated, that is, P(Y|X) is
also different for particularly extreme storms.
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Conclusions/Where to go from here?

Thanks!
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