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Motivation

• Used primarily for monitoring sobriety.

• Recently NIAAA called for research to construct alcohol biosensor
devices which are more accurate, discreet, precise, and tamper proof.

SCRAM CAM

BACtrack Skyn
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The Biology
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The Heat Equation

Definition of Variables

u(η, t) - concentration of alcohol in moles/cm2

y(η, t) - concentration of alcohol in moles/cm2 including biological
variation ε ∼ N(0, σ)

η - depth into dermal layer (normalized as percentage of depth)
t - time in hours
q - parameters of diffusivity vector in cm2/hour
α(t) - input of alcohol into the system at the bottom of the dermal

layer (η = 1) in BAC/BrAC units
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The Heat Equation: Two Parameters

Heat Equation in Strong Formulation

∂u

∂t
(η, t) = q1

∂2u

∂η2
(η, t), 0 < η < 1, t > 0 (1)

u(η, 0) = 0, 0 < η < 1 (2)

u(0, t) = q1
∂u

∂η
(0, t), t > 0 (3)

q1

q2

∂u

∂η
(1, t) = α(t), t > 0 (4)

y(η, t) = c · u(η, t) + ε, ε ∼ N(0, σ) (5)

q = 〈q1, q2〉 ∼ F (6)
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Discretizing the Heat Equation

Problem

• Need u(η, t) for various depths and points in time, but solving this
analytically is likely very difficult or impossible.

• Note: we sample from from two distributions to provide values for q
at this stage, however much of the remainder of the project is
concerned with estimating an appropriate value.

Plan to Solve this Problem

• Use the Finite Element Method with B-Splines to discretize η and
t and view u(η, t) as a matrix of concentration values.
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B-Splines
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The Final Discretized Model

Recursion With Respect to Time

Note: this vector is now only dependent on the parameter q.

ûN(tj ; q) =

j∑
k=1

(
αk−1

(
Â(q)

)j−k)
B̂(q)

The Discretized Matrix Form

Note: this matrix is now only dependent on the parameter q.

UN,T (q) =

~0,{ j∑
k=1

(
αk−1

(
Â(q)

)j−k)
B̂(q)

}T

j=1
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TAC With Measurement Error

The Discretized Form at η = 0 (TAC) Depth

y(q) = ĉ(q) · UN,T (q)

TAC with Measurement Error

yε(q) = y(q) + ε

ε ∼ N(0, σ)
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Simulated TAC using Matlab

Pairs of Probability Density Functions

Pair 1: q1 ∼ N (1, σ2)
q2 ∼ N (1, σ2)

Pair 2: q1 ∼ 0.7N (0.7, σ2) + 0.3N (1, σ2)
q2 ∼ N (1, σ2)

Pair 3: q1 ∼ 0.7N (0.7, σ2) + 0.3N (1, σ2)
q2 ∼ 0.3N (0.7, σ2) + 0.7N (1, σ2)
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Pair 1: Simulated TAC using Matlab
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Pair 2: Simulated TAC using Matlab
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Pair 3: Simulated TAC using Matlab
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Expectation-Maximization Optimization Problem

Likelihood Function

Let Y1,Y2, . . . ,YP be independent measurements that have a joint
distribution p(Y1,Y2, . . . ,YP |q). The parameters are unknown random
variables distributed with distribution F which is also unknown. For a
given F parameter the log likelihood function is

`(F ) = log(p(Y1,Y2, . . .YP |F )) = log

(
P∏
i=1

pi (Yi |F )

)

=
P∑
i=1

log(pi (Yi |F ))

=
P∑
i=1

log

∫
Ω

pi (Yi |q)dF (q)

.
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Definitions

Maximum Likelihood Estimation

Observe that when

L(F ∗) ≥ L(F )

for all F ∈ F , then the maximum likelihood estimator FML is more
likely to be F ∗ than any other F .

Maximum Likelihood Estimator

The maximum likelihood estimator of F is

FML = argmax{`(F ) : F ∈ F}

where F is the family of all probability distributions on Ω.
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Special Theorems

Theorem: (Lindsay, 85)

If Ω is compact, FML can be found in the class of discrete distributions on
Ω with at most P support points.

Carathéodory’s Theorem: (Roberts, 73)

If U ⊆ Rn and its convex hull H(U) has dimension m, then for each
z ∈ H(U), there exists m + 1 points x0, x1, . . . , xm of U such that z is a
convex combination of these points.
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Expectation-Maximization Optimization Problem

Maximum Likelihood Estimator

FML = argmax

{
P∑
i=1

log

(
K∑

k=1

wkpi (Yi | ξk)

)
,K ≤ P

}
wk = P(q = ξk) ≥ 0, for all 1 ≤ k ≤ K ,

K∑
k=1

wk = 1
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Expectation-Maximization Optimization Problem

What is Needed For the Optimization Problem?

Let

λ = (ξK ,wK ) = (ξ1, ξ2, . . . , ξK ,w1,w2, . . . ,wK )

be the vector of weights and supports. It is now appropriate to state the
question as

`(F ) ≈ `(λ) = `(ξ1, ξ2, . . . , ξK ,w1,w2, . . . ,wK ).
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Nonparametric Adaptive Grid Algorithm

NPAG Algorithm

Starting conditions: Yε, ξ
0, a,b,∆D

Output: ξ,w, `(w, ξ)

Step 1: Initialize the grid of support points ξ0,

Step 2: Calculate the Ψ matrix of probabilities and use the PDIP
method to calculate each of the support point weights,

Step 3: Condense the grid by removing support points with sufficiently
low probability,

Step 4: Check the exit condition for the log-likelihood difference, i.e.∣∣`(λ(n+1))− `(λ(n))
∣∣ ≤ 10−4, and exit if true or else proceed to

Step 5,

Step 5: Expand the grid by adding new support points or reset the grid
when support points are too close in proximity, go to Step 2.
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Convergence of NPAG to FML

D-Function

Define the D-Function, the directional derivative of `(F ) in the direction of
the atomic density function δξ, as

D(ξ,F ) =

(
P∑
i=1

p(Yi | ξ)

p(Yi | F )

)
− P. (7)
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Convergence of NPAG to FML

D-Function Properties

• F ∗ = FML if and only if max
ξ∈Ω

D(ξ,F ∗) = 0.

• When max
ξ∈Ω

D(ξ,F ∗) 6= 0, it is true that

L(FML)− L(F ∗) ≤ max
ξ∈Ω

D(ξ,F ∗)

for F ∗,FML ∈ FK .
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Pair 1: Maximum Likelihood using Matlab

Weighted Mean: q1 = 0.9724, q2 = 1.0183
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Pair 1: D-Function using Matlab

D-Function max = −0.0019
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Pair 2: Maximum Likelihood using Matlab

Weighted Mean: q1 = 0.7909, q2 = 1.0183
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Pair 2: D-Function using Matlab

D-Function max = −0.0026
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Pair 3: Maximum Likelihood using Matlab

Weighted Mean: q1 = 0.7888, q2 = 0.9343
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Pair 3: D-Function using Matlab

D-Function max = 0.0029
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Future Work and Conclusions

Conclusions

• A relevant summary of the history of alcohol biosensors and TAC was
provided.

• A new diffusion model was developed and tested.

• Theory was established to reduce the maximum likelihood estimator
to finite support.

• Simulated data tested and verified the model.

• The algorithm results for NPAG Algorithm are very encouraging and
constitute further study.

Vader (CSUCI) June 2020 34 / 39



Future Work and Conclusions

Conclusions

• A relevant summary of the history of alcohol biosensors and TAC was
provided.

• A new diffusion model was developed and tested.

• Theory was established to reduce the maximum likelihood estimator
to finite support.

• Simulated data tested and verified the model.

• The algorithm results for NPAG Algorithm are very encouraging and
constitute further study.

Vader (CSUCI) June 2020 34 / 39



Future Work and Conclusions

Conclusions

• A relevant summary of the history of alcohol biosensors and TAC was
provided.

• A new diffusion model was developed and tested.

• Theory was established to reduce the maximum likelihood estimator
to finite support.

• Simulated data tested and verified the model.

• The algorithm results for NPAG Algorithm are very encouraging and
constitute further study.

Vader (CSUCI) June 2020 34 / 39



Future Work and Conclusions

Conclusions

• A relevant summary of the history of alcohol biosensors and TAC was
provided.

• A new diffusion model was developed and tested.

• Theory was established to reduce the maximum likelihood estimator
to finite support.

• Simulated data tested and verified the model.

• The algorithm results for NPAG Algorithm are very encouraging and
constitute further study.

Vader (CSUCI) June 2020 34 / 39



Future Work and Conclusions

Conclusions

• A relevant summary of the history of alcohol biosensors and TAC was
provided.

• A new diffusion model was developed and tested.

• Theory was established to reduce the maximum likelihood estimator
to finite support.

• Simulated data tested and verified the model.

• The algorithm results for NPAG Algorithm are very encouraging and
constitute further study.

Vader (CSUCI) June 2020 34 / 39



Future Work and Conclusions

Future Work

• Compare finite element method with B-splines against other
discretization methods.

• Utilize a stochastic process for error. Probably Brownian motion.

• Gather new BAC, BrAC, and TAC training data from humans.

• Use a Bayesian approach to estimate the parameter for an individual.
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