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Introduction

The Random Forest (RF) procedure is a supervised learning tool
introduced by Breiman [2001].

Data of the form Dn = {Z1, . . . ,Zn} where Zi = (Xi ,Yi ),
Xi = {Xi ,1, . . . ,Xi ,p} ∈ Rp is a vector of p features, Yi ∈ R is the
response

True relationship given by Yi = f (Xi ) + εi .

Given B resamples and a point x , the RF prediction is given by

ŷ = RF(x ;Dn,Θ) =
1

B

B∑
b=1

T (x ;Dn,Θb)
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Introduction

Many variants of RFs have been developed in the last two decades. The
original one by Breiman [2001] is characterized by

Resamples are obtained via bootstrapping [Efron, 1982].

Base-learners are CART-style trees [Breiman et al., 1984].

Θb = (ΘDn,b,Θmtry,b) where ΘDn,b represents the randomness in
resampling and Θmtry,b serves to randomly select mtry < p features
as candidates for splits at each internal node of each tree.

For classification problems, predicted labels are given by the majority
vote.

This RF will be the one used in the following studies.
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Record of Success

Random forests have remained among the most popular and off-the-shelf
supervised learning methods since its inception.

Bioinformatic: D́ıaz-Uriarte and De Andres [2006], Mehrmohamadi
et al. [2016]

Drug discovery: Svetnik et al. [2003]

Ecology: Prasad et al. [2006], Cutler et al. [2007]

3D object recognition: Bernard et al. [2007], Huang et al. [2010], Guo
et al. [2011], Fanelli et al. [2013]

In a recent large-scale empirical study [Fernández-Delgado et al., 2014],
RFs were found to be the top classifiers against hundreds of alternatives
compared on 121 datasets (the whole UCI database).
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Theoretical Studies

The empirical success of RFs naturally led to lots of research investigating
various properties and extensions:

Consistency properties [Biau et al., 2008, Biau, 2012, Scornet et al.,
2015, Scornet, 2016, Klusowski, 2019]

Asymptotic normality [Mentch and Hooker, 2016, Wager and Athey,
2018]

Stronger CLT [Peng et al., 2019]

Testing procedures [Mentch and Hooker, 2016, 2017, Coleman et al.,
2019]
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Theoretical Studies

Ensemble size vs stabilization [Lopes et al., 2019a,b]

Estimating standard errors [Sexton and Laake, 2009, Wager et al.,
2014]

Variable importance and related issues [Breiman, 2001, Strobl et al.,
2007, 2008, Toloşi and Lengauer, 2011, Nicodemus et al., 2010,
Hooker and Mentch, 2019]

Extensions to ...

Quantile regression [Meinshausen, 2006]

Reinforcement learning [Zhu et al., 2015]

Survival analysis [Hothorn et al., 2005, Ishwaran et al., 2008, Cui et al.,
2017, Steingrimsson et al., 2019]

Siyu Zhou (Pitt) RFs and Regularization June 1, 2020 6 / 48



Lack of Explanation

Despite all of this progress there has been shockingly little work on
actually explaining the underlying mechanisms at work in RFs that might
explain their success.

Main takeaways of studies experimenting tuning the RF procedure are
high-level and heuristic:

Including more trees in the forest helps stabilize predictions.

Tuning the procedure can improve performance.

“present results are insufficient to explain in full generality the
remarkable behavior of random forests.” [Biau and Scornet, 2016]
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Existing Explanations

1. Breiman [2001]: The additional randomness in RFs serves to
de-correlate trees, thereby further reducing the variance of the ensemble

Randomness trades off accuracy at the tree level for reduced
correlation (akin to bias-variance tradeoff)

Updated discussion given in Hastie et al. [2009]

More an motivation for why RFs can potentially work than an
explanation for why they do work
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Existing Explanations

2. Biau and Scornet [2016]: “The authors intuition is that tree
aggregation models are able to estimate patterns that are more complex
than classical onespatterns that cannot be simply characterized by
standard sparsity or smoothness conditions.”

Informal, but perhaps the most popular among RF researchers

Somewhat difficult to formalize and motivate when RFs might be
expected to perform well
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Existing Explanations

3. Wyner et al. [2017] Random forests (and AdaBoost [Freund et al.,
1996]) work well “not in spite, but because of interpolation”

The claim is that because RFs are interpolators, they naturally isolate
“noisy” observations without affecting the perfect (or near perfect)
fits nearby
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Existing Explanations

But for any fixed B, as n→∞, the probability of interpolating all
observations goes to 0. This can be fixed by simply letting B grow with n
(though this isn’t generally how RFs are constructed).

So the RF will interpolate (at least with high probability) if ...

We’re doing classification, and

trees are fully grown, and

we use bootstrapping (or at least subsamples > 0.5n), and

we let B →∞,
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Existing Explanations

However, RFs are also (at least as) successful in regression settings and
have also been shown to work quite well with ...

shallow trees [Duroux and Scornet, 2016]

subsampling instead of bootstrapping [Zaman and Hirose, 2009,
Mentch and Hooker, 2016, Wager and Athey, 2018]

relatively few trees in the ensemble [Lopes et al., 2019b].

Thus, at best the interpolation theory is only potentially useful in this
narrow scope of problem type.
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Existing Explanations

Why doesn’t this explanation (or something in the same spirit) apply to
regression problems?

Let’s consider the same toy example we saw before and recall what Wyner
et al. [2017] say that RFs are doing ...
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Existing Explanations
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The RF is not interpolating and in fact looks to be doing something nearly
opposite – trying to “smooth out” the influence of the outlying point
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Existing Explanations

Both Breiman [2001] and Wyner et al. [2017] seem to largely agree that in
general, random forests substantially outperform bagging.

This is where we begin to take issue:

Certainly not a “universal truth” and seems like a potentially naive
foundation for building an explanation for RF success

Not easy to find simulation settings where bagging performs
drastically worse

Nonetheless considered popular wisdom and simply taken as fact in
most cases
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Ingredients for a good explanation

In our view, a “good” explanation for RF success should ...

Be specific enough to determine (at least roughly) when (in what
settings) RFs should be expected to perform well relative to other
methods

Identify an intuitive role for the randomness (mtry parameter)

Either extend to other kinds of methods (base-learners) or provide
intuition into why this is a tree-based phenomenon
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Relative Performance of RFs

Relative to bagging where no additional randomness injected in the
construction of trees, RFs perform best when the data is very noisy (low
SNRs).

Let’s first look at some simulated data:

1. Linear models: same setup as in Hastie et al. [2017]

Rows of X ∈ Rn×p independently drawn from Np(0,Σ), where
Σ ∈ Rp×p has entry (i , j) = ρ|i−j| with ρ = 0.35.

Response Y = Xβ + ε where ε ∼ N(0, σ2I ) and σ2 is calculated to
satisfy corresponding SNR level ν, i.e.

σ2 =
βTΣβ

ν

First s components of β are equal to 1 and the rest are equal to 0
(beta-type 2 in Hastie et al. [2017])
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Relative Performance of RFs

2. MARS: models studied in Friedman [1991] and recent RF papers
where

Y = 10 sin(πX1X2) + 20(X3 − 0.05)2 + 10X4 + 5X5 + ε

Features drawn independently from Unif(0,1); errors drawn in same
fashion with σ2 chosen to produce a particular SNR.
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Relative Performance of RFs

For the linear model, we take n = 500, p = 100, and s = 5

For the MARS model, we take p = s = 5 with n = 200, 500 or 10000

Consider SNRs ranging from 0.05 to 6 equally spaced on the log scale

Models built via the R package randomForest at default settings
except for mtry

Note: Here we adopt a slightly different convention and let mtry
denote the proportion of the p features available for splitting, rather
than the raw number

Differences of test error of random forests (mtry = 0.33) and bagging
(mtry = 1) calculated on separate test set with sample size
nt = 1000 is calculated and averaged over N = 500 simulations.
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Relative Performance of RFs
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Figure 1: Error(Bagg) - Error(RF) vs SNR. Positive values indicate better
performance by RFs.
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Relative Performance of RFs

In each case we see a clear pattern: as the SNR goes up, the advantage
offered by RFs dies out.

How about on real-world data? Here we take 15 datasets intended for
regression to compare performance.

Since we don’t know the true SNRs, we inject additional random
noise ε ∼ N(0, σ2) into the response

σ2 chosen as a proportion α of the sample variance of the response
for α = 0, 0.01, 0.05, 0.1, 0.25, 0.5

Consider the relative test error defined by

RTE =
Êrr(Bagg)− Êrr(RF)

σ̂2
y

× 100%

where Êrr(Bagg) and Êrr(RF) correspond to 10-fold CV error and σ̂2
y

is the empirical variance of the original response.
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Relative Performance of RFs

Dataset p n

Abalone Age [abalone] 8 4177
Bike Sharing [bike] 11 731
Bioston Housing [boston] 13 506
Concrete Compressive Strength [concrete] 8 1030
CPU Performance [cpu] 7 209
Conventional and Social Movie [csm] 10 187
Facebook Metrics [fb] 7 499
Parkinsons Telemonitoring [parkinsons] 20 5875
Servo System [servo] 4 167
Solar Flare [solar] 10 1066

Table 1: Summary of low dimensional data utilized.
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Relative Performance of RFs

Dataset p n

Aquatic Toxicity [AquaticTox] 468 322
Molecular Descriptor Influencing Melting Point [mtp2] 1142 274
Weighted Holistic Invariant Molecular Descriptor [pah] 112 80
Adrenergic Blocking Potencies [phen] 110 22
PDGFR Inhibitor [pdgfr] 320 79

Table 2: Summary of high dimensional data utilized.
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Relative Performance of RFs
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Figure 2: Shifted RTE on real data where additional noise is added. The left plot
shows results on low-dimensional datasets taken from the UCI repository; the
right plot shows results on high-dimensional datasets.
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Relative Performance of RFs

Note that in comparing RFs to bagging, we’re really just comparing RFs
with different values of mtry. Suppose we reverse the direction of the
problem and estimate the optimal value of mtry at various SNRs ...

Here again we consider the same MARS and linear model setups as
above with the same sampling, covariate, and noise settings (here
p = 20, s = 10 for linear model)

For both models, we consider n = 50 and n = 500

Optimal mtry determined on independent test sets of same size;
results averaged over 500 repetitions at each SNR level for each
setting
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Relative Performance of RFs
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Figure 3: Optimal mtry vs SNR as measured by lowest average test error across
500 replicates.
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Degrees of Freedom for RFs

So what leads to RFs’ advantage in low SNR settings? In their recent
empirical study comparing best subset selection (BSS), forward selection
(FS), lasso, and relaxed lasso, Hastie et al. [2017] observe similar patterns
of relative performance and attribute this to differences in degrees of
freedom (dof).
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Degrees of Freedom for RFs

We consider two models: ‘MARSadd’ Friedman [1991]

Y = 0.1e4X1 +
4

1 + e−20(X2−0.5)
+ 3X3 + 2X4 + X5 + ε ,

with features sampled independently from Unif(0, 1) and linear
models drawn in same fashion as before with the following settings
from Hastie et al. [2017]

Low: n = 100, p = 10, s = 5
Medium: n = 500, p = 100, s = 5
High-10: n = 100, p = 1000, s = 10

SNR fixed at 3.52 (same findings at different SNRs)

mtry = 1/10, 1/3, 2/3, 1

dof estimated across 500 repetitions and plotted against maxnodes
(maximum number of terminal nodes)
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Degrees of Freedom for RFs
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Figure 4: Estimated dof of RFs with different values of mtry .
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Extensions to RandFS

Results thus far are really interesting and helpful, but perhaps not
shocking: more randomness =⇒ lower variance / less overfitting =⇒
improved performance at low SNRs.

But ... there seems to be nothing tree-specific about this. Trees are
just sequentially partitioning the feature space into response-homogeneous
regions ... can think of this as “building up” a model in the same fashion
as forward selection.

So, if we were to create ensemble-ized versions of classical forward
selection – analogues to the classic tree-based bagging and random forest
procedures – would we see the same pattern? How would they compare to
classical procedures (FS, lasso, relaxed lasso)?
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Extensions to RandFS

Bagging and random forests analogues for forward selection:

Bagged Forward Selection (BaggFS)
Draw B bootstrap samples
Perform forward selection on each to depth of d
Average across the B models

Randomized Forward Selection (RandFS)
Draw B bootstrap samples
Perform forward selection on each to depth of d , but at each step,
randomly choose mtry×p features as candidates for selection. Such
candidates are selected uniformly at random without replacement.
Average across the B models
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Extensions to RandFS

We consider linear models (constructed as before) in the following
settings from Hastie et al. [2017]

n p s

Low setting 100 10 5
Medium setting 500 100 5
High-5 setting 50 1000 5

High-10 setting 100 1000 10

SNR equally spaced from 0.05 to 6 on log scale
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Extensions to RandFS

Following Hastie et al. [2017], performance measured as the test error
relative to the Bayes error rate. Specifically, given a test point (x0, y0)
with y0 = xT

0 β + ε0 and ε0 ∼ N(0, σ2), the relative test error (RTE)

to Bayes of a regression estimate β̂ is given by

RTE(β̂) =
E(y0 − xT

0 β̂)2

σ2
=

(β̂ − β)TΣ(β̂ − β) + σ2

σ2

Results averaged over 100 repetitions
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Extensions to RandFS
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Figure 5: Performance Comparisons in low setting.
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Extensions to RandFS
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Figure 6: Performance Comparisons in low setting.
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Extensions to RandFS
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Figure 7: Performance Comparisons in low setting.
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Extensions to RandFS
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Figure 8: Performance Comparisons in low setting.
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Extensions to RandFS
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Figure 9: Performance Comparisons in medium setting.
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Extensions to RandFS
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Figure 10: Performance Comparisons in high-5 setting.
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Extensions to RandFS
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Figure 11: Performance Comparisons in high-10 setting.
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Degrees of Freedom for RandFS

Dof estimates for RandFS follow the general pattern you would expect.
Here we use a linear model with n = 70, p = 30, s = 5 and SNR = 0.7.
Results are averaged over 500 repetitions.
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Randomization as Regularization?

RandFS seems to be doing a sort of implicit regularization:

For each of the B models, features are either selected or not

For each feature Xk , its selection proportion αk depends on the
original data (and true relative importance), bootstrap samples, depth
d to which models are grown, and mtry

Coefficient estimates are effectively shrunk by amount proportional to
that selection proportion

In a simple case where X is orthogonal and the B models are built
with m < p features uniformly selected at random and n observations,
estimates given by RandFS converges to ridge estimates with
λ = p−m

p as B →∞.

LeJeune et al. [2019] showed that the optimal risk of ensembles of
linear models built nonadaptively converges to the optimal risk of
ridge regression.
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Discussions

Strong empirical evidence that relative improvement with RFs is a
direct function of the SNR

RFs not “just better” than bagging; mtry parameter really ought to
be tuned (though we saw good performance even with mtry = 0.33
fixed)

Reason to think that mtry serves much the same regularization role
as, e.g. λ in ridge/lasso.

This is a general principle rather than a tree-specific result.
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