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Context

• Dynamic regression models can be used for active learning
and concept drift applications;

• This work explores regression tree models in this context;

• Emphasis is on use for streaming data applications;

• Bases of work are the original work on BART (Chipman
et al., 2010)1 with extension to dynamic case (Taddy et
al., 2010) 2.

1Chipman, H.A., George, E.I. and McCulloch, R.E., 2010. BART: Bayesian
additive regression trees, Ann. Appl. Statist., 4, 1: 266–298.

2Taddy, M., Gramacy, R.B. and Polson, N., 2010. Dynamic Trees for
Learning and Design, J. Amer. Stat. Assoc, 106: 109–123.



Idea 1: Dynamic regression models

• Time series yt ∈ Rn depends on explanatory variables
xt ∈ Rm:

yt = g(xt ; zt , θ).

• yt also depends on a latent Markov process zt ∈ Rk

defined by p(z0 | θ), p(zt | zt−1, θ) and fixed parameters θ;

• Relationship between yt and xt changes with time through
the latent process;

• Complete model to time t looks like:

p(y1:t , z0:t , θ | x1:t)

= p(z0 | θ)

(
t∏

i=1

p(yi | xi , zi , θ) p(zi | zi−1, θ)

)
p(θ).



Idea 1: the Kalman filter

• In many respects the simplest example of a dynamic
state-space model:

z0 ∼ N(µ0,W0);

zt+1 | ut , zt ∼ N(Ftzt + Gtut ,Wt);

yt | zt ∼ N(Htzt ,Vt),

where ut are additional fixed and known covariates.

• For fixed and known

θ = (µ0,F0:t+1,G1:t+1,H1:t+1,W0:t+1,V1:t+1),

closed form expressions for:
p(zt | u1:t , y1:t , θ) (smoothing);
p(zt+1 | u1:t+1, y1:t , θ) and p(yt+1 | u1:t+1, y1:t , θ) (prediction).



Idea 1: Kalman filter updating equations

In case you’ve forgotten!

zt | u1:t , y1:t , θ ∼ N(µ̂t , Σ̂t);

zt+1 | ut+1, u1:t , y1:t , θ ∼ N(Ft+1µ̂t + Gt+1ut+1,Rt+1);

yt+1 | u1:t+1, y1:t , θ ∼ N(Ht+1(Ft+1µ̂t + Gt+1ut+1),

HT
t+1Rt+1Ht+1 + Vt+1),

where Rt+1 = FT
t+1Σ̂tFt+1 + Wt+1, and µ̂t and Σ̂t are defined

recursively:

µ̂0 = µ0 and Σ̂0 = W0;

µ̂t+1 = Ft+1µ̂t + RT
t+1H

T
t+1(Ht+1Rt+1H

T
t+1 + Vt+1)−1Ht+1Rt+1

× (yt+1 − Ft+1Ht+1µ̂t − Gt+1ut+1);

Σ̂t+1 = Rt+1 − RT
t+1H

T
t+1(Ht+1Rt+1H

T
t+1 + Vt+1)−1Ht+1Rt+1.



Idea 2: Regression trees

• A regression tree T partitions the space of covariates
X ⊆ Rm by component-wise splitting rules into
(hyper)-rectangles;

• For each partition, the observable y ∈ Rn has a fixed
value (or more generally a fixed distribution);

• T parameterized by: splitting component and split
threshold at each branch, leaf values (or leaf distribution
parameters).
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Bringing the 2 ideas together: dynamic
Bayesian regression trees

• Goal: produce a reasonably flexible dynamic regression
model that still has some tractability;

• Basic idea:
• yt follows a regression tree model with explanatory variables xt

and leaf node distributions defined by zt ;
• zt is a Markov process so the leaf node distributions evolve in

time (so dynamic regression);
• θ is any other fixed model parameter;
• Tree structure fixed for now.



Dynamic BART

• Let a tree T have K terminal nodes;

• Let η(xt , T ) ∈ {1, . . . ,K} be the node index of xt in the
partition defined by T .

• Let zt = (zt1, . . . , ztK ) be partitioned into parameter(s)
associated with the distribution of yt at each node;

• Let θ be any other fixed parameters in the tree;

• Then our dynamic BART model is:

yt | xt , zt , θ, T ∼ p(yt | zt,η(xt ,T ), θ)

zt | zt−1, θ ∼ p(zt | zt−1, θ)

• There are priors on z0, T and θ.



Example with nice tractability

• Gaussian tree:

yt | xt , zt , θ, T ∼ N(zt,η(xt ,T ),Vη(xt ,T )),

zt+1,k | ztk ∼ N(Fkztk ,Wk), k = 1, . . . ,K ,

with z0k ∼ N(µ0k ,W0k).

• So yt is Gaussian and its mean at each node in the tree
evolves as an independent Gaussian process.

• Nice property:
• Each node k is an independent Kalman filter
• ... but we only observe yt at node k when η(xt , T ) = k;



Intermittent Kalman filter

• This is an intermittent Kalman filter — closed form
expressions still for posteriors like p(zt | x1:t , y1:t , θ) etc.3:

• If you observe yt+1 then update µ̂t+1 and Σ̂t+1 from µ̂t

and Σ̂t in the usual way;

• If you do not observe yt+1 then µ̂t+1 = µ̂t and
Σ̂t+1 = Rt+1.

3Sinopoli et al. (2004), Kalman filtering with intermittent observations,
IEEE Transactions on Automatic Control 49, 9: 1453–1464.



Inference on the tree structure

• Taddy et al. (2010) proposed a similar model that
incorporated learning about the tree structure;

• They had a prior on the tree structure (see also Chipman
et al., 2010) and allowed it to evolve by
merging/splitting/deleting splits;

• For any tree node:

p(η is a split) ∝ α(1 + dη)−β, α ∈ (0, 1), β ≥ 0,

where dη is the depth of the node in the tree, then

p(T ) ∝
∏
η∈T

is a split

p(η is a split)
∏
η∈T
is a leaf

(1− p(η is a split)).



Inference on the tree structure

p(T , z0:t | θT , x1:t , y1:t)
= p(T | θT , x1:t , y1:t) p(z0:t | T , θT , x1:t , y1:t)

= p(T | θT , x1:t , y1:t)
KT∏
k=1

p(ztk | T , θT , x1:t , y1:t).

• The product is of Gaussian terms (conditioned on T );
• Remains to compute p(T | θT , x1:t , y1:t);
• A recursive formula has been developed that allows O(1)

updating at each new observation.
• Ensemble inference used:

• Fixed ensemble, compute p(T | θT , x1:t , y1:t) for each tree, use
model averaging for prediction;

• Availability of p(T | θT , x1:t , y1:t) allows MCMC exploration of
space of trees.



Example

• Compared to the Kalman Filter;

• Time-series data set simulated from the Mackey-Glass
non-linear time series.

• Ensemble of 50 trees;

• Known parameters:

H =

[
1
1

]
, F =

[
0.9 0
0 0.2

]
, W =

[
0.1 0
0 0.1

]
, V = 0.03;

for y ∈ R, z ∈ R2.



Example

Figure: One-step
ahead predictions
with BDRT and the
Kalman Filter

Figure: Latent state
predictions with
BDRT and the
Kalman Filter

Figure: Difference in
RMSE between
BDRT and the
Kalman Filter



Example

Comparing different MCMC methods:

1 ”MH” is the Chipman et al. method using grow, prune,
swap and change;

2 ”BST” uses the same moves but has simulated tempering
with 10 levels of heating. Prior specified using Geyer
(1995)4.

3 ”MST” uses different moves: multigrow, multiprune,
multichange, shift, and swap. The upper bound of
growing, changing and pruning is temperature dependent.

4Geyer, C. J. and Thompson, E. A. (1995). Annealing Markov chain Monte
Carlo with applications to ancestral inference. J. Americ Statist. Assoc. 103,
1119–1130.



Example

Figure: Comparing
RMSE between the
3 different MCMC
approaches.

Figure: The
probability of the
trees alternate
between zero and
one.

Figure: Average tree
size as the algorithm
progresses



Example

Figure: Temperature traversal
of the trees started at the
highest temperature.

Figure: Time comparisons
between different MCMC
methods.



To conclude: a note on streaming

• Exchangeability of responses based on conditional data
allows us to to develop a window-like streaming algorithm;

• If the data are arriving faster than they can be processed
then we can randomly select inputs to process;

• We’ll still be in the intermittent Kalman filter model;

• Ability to process depends on tree size, rate of data
arrival, speed of algorithm, choice of model type (state
only estimation, dual estimation, parameter learning,
variable or model selection).



Thank you


