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Motivating example

Does the incinerator influence larynx cancer incidence?
• Lung cases as a surrogate for susceptible population

• Model as two inhomogeneous Poisson point processes 

• Intensities:                      and

If there is an effect:
1. The ratio                                       would be non-constant

2. It would depend on the distance to the incinerator

Focus of our work is on testing #1
Peter J. Diggle. A point process modelling approach 
to raised incidence of a rare phenomenon
in the vicinity of a prespecified point, JRSSA, 1990

Figure 4: Locations of larynx (red dots) and lung (blue pluses) cancers together with the location
of the industrial incinerator (black circle cross).

Figure 5: Geospatial window used for the Chicago Crime experiment. The window coincides
with the OpenStreetMap tile at zoom level of 10 that covers the city of Chicago and the
surrounding region. Map data copyrighted OpenStreetMap contributors and available from
https://www.openstreetmap.org.
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Goal

For point processes P and Q, test null hypothesis:

• Do the intensities of P and Q have the same functional form?

Why not test for 𝜆𝑃 = 𝜆𝑄 ?
• Conflates location pattern with the total number of points in the pattern

• Comparing raw frequency histograms vs. normalized histograms

• For the cancer example:

‒ Obviously, fewer red dots: easily reject 𝜆𝑃 = 𝜆𝑄

‒ Are the location patterns different? Is 𝜆𝑃/𝜆𝑄 = const? Figure 4: Locations of larynx (red dots) and lung (blue pluses) cancers together with the location
of the industrial incinerator (black circle cross).

Figure 5: Geospatial window used for the Chicago Crime experiment. The window coincides
with the OpenStreetMap tile at zoom level of 10 that covers the city of Chicago and the
surrounding region. Map data copyrighted OpenStreetMap contributors and available from
https://www.openstreetmap.org.

17

Chorley-Ribble, Lancashire
England 1974-1983

Figure 4: Locations of larynx (red dots) and lung (blue pluses) cancers together with the location
of the industrial incinerator (black circle cross).

Figure 5: Geospatial window used for the Chicago Crime experiment. The window coincides
with the OpenStreetMap tile at zoom level of 10 that covers the city of Chicago and the
surrounding region. Map data copyrighted OpenStreetMap contributors and available from
https://www.openstreetmap.org.

17

Figure 4: Locations of larynx (red dots) and lung (blue pluses) cancers together with the location
of the industrial incinerator (black circle cross).

Figure 5: Geospatial window used for the Chicago Crime experiment. The window coincides
with the OpenStreetMap tile at zoom level of 10 that covers the city of Chicago and the
surrounding region. Map data copyrighted OpenStreetMap contributors and available from
https://www.openstreetmap.org.

17

Lung

Larynx

Industrial 
incinerator



Two-sample problem

Define location density of events:

Null hypothesis

• Nuisance parameter is gone!

• Two-sample problem: 

‒ Are the two samples drawn from the same distribution?



Existing Approaches

Kelsall & Diggle, 1995a, 1995b:
• Kernel density estimate of the logarithm of intensity ratio

Zhang & Zhuang, 2017:
• Kolmogorov-Smirnov like comparison of masses for a collection of pre-specified regions

Fuentes-Santos & González-Manteiga & Mateu, 2017:
• 𝐿2-distance between the kernel density estimates of 𝑝 and 𝑞

Use general two-sample methodology:
• Maximum Mean Discrepancy, Wasserstein distance, Energy distance, etc.

Main issues
• Resampling needed to compute p-values, except Zhang & Zhuang

‒ Multiple testing at industrial scale, granularity of p-values

‒ Real-time systems, visualization

• p-value crisis: no alternative measures such as Bayes Factors available for these methods

• No replicated pattern comparison: e.g. sets of crime patterns on Mondays vs. Wednesdays



Inspiration

Maximum Mean Discrepancy (MMD)
• Notion of dissimilarity between probability distributions

• For a kernel, such as  

• MMD! 𝑝, 𝑞 = 0 if and only if 𝑝 = 𝑞

Kernel Mean Embedding
• There exist embeddings 𝜇" and 𝜇# of distributions 𝑝 and 𝑞: 

• Problem:

‒ infinite-dimensional

‒ implicit



Proposed Approach

Approximate Kernel Mean Embedding (aKME)

• Finite dimensional, explicit formulas, interpretable

• Related to Random Fourier Features (RFF) of Rahimi & Recht 2007

• Custom tailored to 2-dim setting, gives better accuracy than RFF for the same number of dimensions

• Consistency is inherited from MMD 

• Not limited to testing based on Euclidean distance (≈MMD2)

‒ easy p-values!



Approach: Step 1

Approximate Kernel Mean Embedding (aKME)
• Pick a line, project all points in the pattern onto the line

• Pick a radius, wrap the line onto the circle of that radius

• Compute sin/cos values and take means

• Result: two number “fingerprint” of the point pattern 

‒ in given direction 

‒ at given scale (~circle radius)

Rinse & Repeat:
• Repeat for several lines and radii

• Obtain aKME of the point pattern

• 𝐷 = 2 x #lines x #radii – dimensional embedding

Individual point embedding

aKME = mean of individual emb



Approach: Step 2

Test:

• Each dimension of aKME is a mean, so test for equality of means

• Hotelling’s 𝑇2 or newer tests such as Chen & Qin do not work

‒ Estimating covariance matrix is unstable

‒ Nonlinear functional relationships between coordinates of aKME: sin2 + cos2 = 1 and higher order

aKME(𝑃) = aKME(𝑄)



Approach: Step 2

Our approach
• Apply two-sample t-tests on each coordinate, get p-values p1, p2, …., pD

• Combine all the p-values

‒ Positive dependencies between tests: cannot use Fisher’s combo, Stouffer’s Z, …

‒ Use the Harmonic Combination or Cauchy Combination

Mean Bayes Factor BF9:
• Can compute Bayes factors for each t-test using default priors

• Combine resulting BFs via arithmetic mean – optimal according to Vovk & Wang, Arxiv 2019

Q do not have to be of the same type for the null hypothesis to hold. The test is concerned only
with the functional form of the intensity, and not the type of the process. For example, if P is
an inhibition process and Q is a cluster process, then the null hypothesis still holds as long as the
first-order intensity functions of these processes are the same up to a constant factor; having it
otherwise would have implied that the test conflates higher order properties with the first order
properties.

Combining P-Values To obtain an overall p-value for the tests described above, we need to
combine the per-coordinate p-values p1, p2, ..., pD in a manner that is robust to the dependencies
between them. We found experimentally that classical p-value combination approaches such as
Fisher’s and Stou↵er’s methods (see, e.g. [38, 30]) fail to give well-calibrated p-values likely due
to their strong reliance on the independence assumption. In contrast, the recently introduced
combination techniques, harmonic mean p-value [23, 50] and Cauchy combination test [37] re-
sulted in well-calibrated tests with better power than simple alternatives such as the Bonferroni
adjustment for multiple testing. We quickly review these approaches and provide some insight
into their behavior and the relationship between them.

The harmonic mean p-value combination approach defines an overall p-value by

p
H = H

 
D

1
p1

+ 1
p2

+ · · ·+ 1
pD

!
, (5.1)

where H(·) is a function whose precise form is described in [50]. Since H(x) ⇡ x for small values
of x, pH is approximately the harmonic mean of p1, p2, ..., pD. On the other hand, the Cauchy
combination test defines an overall p-value by the formula

p
C =

1

⇡
cot�1

✓
cot⇡p1 + cot⇡p2 + · · ·+ cot⇡pD

D

◆
, (5.2)

where cot is the cotangent function, cotx = tan(⇡/2 � x). In contrast to classical combination
techniques, both of these approaches are shown to be robust when there are dependencies between
the individual p-values p1, p2, ..., pD [50, 37].

Curiously, these two methods behave very similarly for small p-values. Indeed, we can rewrite
Eq. (5.2) as D cot⇡pC = (cot⇡p1 + cot⇡p2 + · · · + cot⇡pD). For small x, the approximation
cotx ⇡ 1/x can be used, and canceling out ⇡s on both sides we getD/p

C ⇡ 1/p1+1/p2+· · ·+1/pD.
It follows that pC is approximately the harmonic mean of p1, p2, ..., pD, and, therefore, pC ⇡ p

H .
To gain some more intuition about the behavior of these techniques we can look at the dis-

tribution of the combined p-values under the null. Figure 2 depicts the histogram of combined
p-values corresponding to the Poisson process experiment in Section 6.1 when the null holds. It
can be seen that the methods behave very similarly for small values of p as expected from the
approximation argument above. Both of the combination approaches result in unit density for
small values of p, which makes them equally suitable for hypothesis testing (c.f. “Size” portion
of Table 1). Interestingly, the harmonic mean approach leads to overcrowding of p-values near
1, whereas the Cauchy combination p-values stay more or less uniformly distributed. The large
p-value behavior can in general be ignored in the context of hypothesis testing. However, it can
be a consideration when using adaptive false discovery control techniques based on the mirror-
ing technique [8, 5] that relies on symmetric distribution of p-values near 0 and 1. Otherwise,
the harmonic mean approach has a number of advantages, including a Bayesian model-averaging
interpretation and its being an inherently multilevel test [50].
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Simulations: Poisson processes

Inhomogeneus Poisson processes
• Both combination approaches control the size of test

• More powerful when compared to Zhang & Zhuang, JMVA 2017

• Zhang & Zhuang is the only previous test that doesn’t 
require resampling to compute p-values

This Paper Zhang-Zhuang

Model �1 �2 � ↵ = 0.01 ↵ = 0.05 ↵ = 0.1 ↵ = 0.01 ↵ = 0.05 ↵ = 0.1

Size Linear 1 1 100 0.011 0.056 0.109 0.008 0.036 0.064
1 400 0.016 0.059 0.109 0.009 0.040 0.081
1 800 0.008 0.054 0.094 0.007 0.046 0.086

2 2 100 0.008 0.056 0.108 0.006 0.038 0.075
2 400 0.014 0.056 0.098 0.008 0.040 0.084
2 800 0.008 0.048 0.108 0.012 0.056 0.098

3 3 100 0.010 0.052 0.100 0.007 0.034 0.077
3 400 0.011 0.050 0.098 0.010 0.043 0.090
3 800 0.016 0.062 0.101 0.007 0.040 0.081

Sine 1 1 100 0.015 0.062 0.106 0.006 0.032 0.068
1 400 0.014 0.057 0.102 0.012 0.046 0.087
1 800 0.010 0.056 0.104 0.006 0.042 0.096

2 2 100 0.010 0.059 0.104 0.004 0.031 0.067
2 400 0.008 0.048 0.087 0.009 0.040 0.088
2 800 0.011 0.052 0.092 0.008 0.040 0.086

3 3 100 0.010 0.060 0.106 0.008 0.038 0.076
3 400 0.014 0.056 0.104 0.011 0.044 0.086
3 800 0.008 0.053 0.088 0.010 0.046 0.088

Power Linear 1 2 100 0.082 0.218 0.320 0.090 0.226 0.332
2 400 0.656 0.826 0.886 0.638 0.827 0.890
2 800 0.976 0.996 0.998 0.956 0.987 0.995
3 100 0.602 0.780 0.839 0.517 0.754 0.844
3 400 1.000 1.000 1.000 1.000 1.000 1.000
3 800 1.000 1.000 1.000 1.000 1.000 1.000

2 3 100 0.069 0.184 0.266 0.058 0.181 0.268
3 400 0.527 0.740 0.809 0.488 0.718 0.809
3 800 0.932 0.976 0.988 0.886 0.961 0.981

Sine 1 2 100 0.412 0.636 0.734 0.137 0.346 0.477
2 400 1.000 1.000 1.000 0.958 0.992 0.997
2 800 1.000 1.000 1.000 1.000 1.000 1.000
3 100 0.964 0.990 0.994 0.568 0.802 0.888
3 400 1.000 1.000 1.000 1.000 1.000 1.000
3 800 1.000 1.000 1.000 1.000 1.000 1.000

2 3 100 0.088 0.232 0.345 0.014 0.057 0.108
3 400 0.812 0.923 0.952 0.114 0.302 0.436
3 800 0.996 1.000 1.000 0.494 0.754 0.857

Table 1: Rejection rates for the single pattern comparison test when the Poisson assumption holds.
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Simulations: Non-Poisson processes

When Poisson assumption is violated:
• Inhibition/Hardcore: more conservative

• Clustering: anti-conservative

Use effective sample size:
• Divide the total number of points by per-cluster count

• Brings down the size to nominal level

• Useful when e.g. locations from the same user:

‒ Effective sample size = #users

Model ↵ = 0.01 ↵ = 0.05 ↵ = 0.1

Size Hardcore-1 0.012 0.046 0.090
Hardcore-2 0.008 0.035 0.073
Hardcore-3 0.002 0.009 0.020
Cluster-1 0.056 0.164 0.271
Cluster-2 0.160 0.372 0.508
Cluster-3 0.413 0.686 0.780

Table 2: Single pattern testing depends on the validity of the Poisson assumption. When it is violated, the
test size does not match the nominal rate; inhibition and clustering have opposite e↵ects on the size.

Model ↵ = 0.01 ↵ = 0.05 ↵ = 0.1

Size Cluster-1 0.011 0.051 0.086
Cluster-2 0.014 0.048 0.086
Cluster-3 0.015 0.050 0.078

Table 3: Size of the single pattern comparison test when the Poisson assumption is violated due to clustering.
Using the e↵ective sample size in the t-tests for clustering processes results in sizes that are close to the
nominal rate.

in our setting T1 performs better in terms of power, so we present results based on T1.
Our computations are based on their code that includes a more e�cient estimator of the
test statistic for Poisson processes. The last three columns of Table 1 show the rejection
rates for Zhang-Zhuang test. Being based on an asymptotic result, their test can be
seen to be conservative for smaller sample sizes. Keeping this in mind, for most of the
pattern comparisons both tests have similar power. An interesting exception happens
when comparing Sine patterns for the parameter values � = 2 and � = 3. While our test
quickly reaches high power with the increasing sample size, it can be seen that the Zhang-
Zhuang test struggles in this setting and the di↵erences in the power cannot be ascribed to
its conservativeness. We believe that this may be related to their test statistic being based
on the maximum di↵erence of normalized counts, which can be overwhelmed by the noise
coming from the dense areas, thereby, ignoring the true di↵erences in the sparse areas of
the patterns.

Next we investigate what happens when the Poisson assumption is violated. To this
end we run comparisons between patterns from homogeneous Poisson process and patterns
from homogeneous non-Poisson processes. This is the null case, because the functional
form of intensity is the same (constant) for all of these cases. The non-Poisson processes
we consider are generated using the spatstat package (Baddeley et al., 2015) and are as
follows. We use Matern’s Model II inhibition process with the inhibition distance parameter
setting of r = 0.01, 0.02, 0.04; these are referred to as Hardcore-1,2,3. We also generate
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Simulation: Replicated Pattern Comparison

Poisson assumption is not needed
Technical assumption, that can be checked using domain knowledge

↵ = 0.01 ↵ = 0.05 ↵ = 0.1

Size 0.008 0.045 0.090

Power 0.764 0.900 0.938

Table 4: Rejection rates for the replicated pattern comparison test.

pattern test is concerned only with the functional form of the intensity, and not the type of
the process. For example, when comparing an inhibition process to a cluster process, the
null hypothesis still holds as long as the first-order intensity functions of these processes
are the same up to a constant factor; having it otherwise would have implied that the test
conflates higher order properties with the first order properties.

6.2. Real-World Data

Single Pattern: Cancer Data. We apply the single pattern comparison test to a dataset
from an epidemiological study relating to the locations of larynx and lung cancer occur-
rences in Chorley-Ribble area of Lancashire, England during the years of 1974-1983; the
source of the data is (Diggle, 1990). Figure 6.1 plots the 58 cases of larynx cancer and
978 cases of lung cancer together with the location of an industrial incinerator in this area.
Following (Diggle, 1990), we assume that the inhomogeneous Poisson process model ap-
plies, and that the distribution of the lung cancer cases can be used as a surrogate for the
susceptible population.

Let the corresponding true intensity functions be �
Larynx(·) and �

Lung(·). If there is an
e↵ect of the relative location of the incinerator on larynx cancer (and not on lung cancer),
then the functional forms of these intensities would be di↵erent, i.e. there would be some
non-constant function ⇢(·) such that �Larynx(·) = ⇢(·)�Lung(·). If, furthermore, ⇢(·) depends
on the distance to the incinerator, this would be an evidence of a di↵erential e↵ect of the
incinerator on the two types of cancer. Considering the larynx cancer locations as the
point pattern X and the lung cancer locations as the pattern Y , we would like to test
whether the functional form of the intensity is the same for these patterns. Note that the
null hypothesis states that there is a constant c such that the intensities of the two point
processes satisfy �

Larynx(·) = c�
Lung(·). Applying our methodology, we find the p-value of

p
H = 0.905 and a mean Bayes factor of BF10 = 0.28, which leads us to retain the null

hypothesis; this is in agreement with the re-analyses of this data such as (Diggle et al.,
1991).

Replicated Patterns: Chicago Crime. In this experiment we use the dataset provided by
Chicago Data Portal2 that reflects reported incidents of crime that occurred in the City of

2data.cityofchicago.org

20



Application 1: Cancer Data

Reanalysis of cancer data
p-value = 0.905
BF9: = 0.28

Retain the null 
• In agreement with previous re-analyses of this data

Figure 4: Locations of larynx (red dots) and lung (blue pluses) cancers together with the location
of the industrial incinerator (black circle cross).

Figure 5: Geospatial window used for the Chicago Crime experiment. The window coincides
with the OpenStreetMap tile at zoom level of 10 that covers the city of Chicago and the
surrounding region. Map data copyrighted OpenStreetMap contributors and available from
https://www.openstreetmap.org.
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Application 2: Chicago Crime

• A year of data, one pattern per crime type per day

• Replicated pattern comparison

• Different categories of crimes by day of week

• Tue vs Thu is a control, we do not expect to see differences here

Rejected @ FDR 0.1

Strong evidence

Substantial evidence
Barely mention!



Summary

Method for point pattern comparison
• Inhomogeneous Poisson point processes

• Works for non-Poisson processes if effective sample size can be estimated

• Can do replicated pattern comparison for very general class of processes

Gives a notion of strength of evidence
• Our Mean Bayes Factor can be used to judge evidence against the null

• In line with recent suggestions on reproducibility

Big Data:
• Highly efficient computation

‒ aKME can be computed in parallel for each pattern

‒ For testing need just basic summaries per aKME dimension: number of points, mean, standard deviation



Future Directions

Production use:
• Can we implement this on Hive/Spark?

‒ P-value computation requires t-distribution CDF

‒ For combining p-values one can use Cauchy combination which only requires the cotangent function

‒ Bayes factor is more complex (numerical integration), maybe use asymptotics?

Visualization: Can we highlight where the point patterns are different?
• Simple approach:

‒ Estimate the normalized intensity of point patterns (e.g. kernel smoothing)

‒ Visualize the difference

• Hierarchical testing zoom-in:

‒ Normalization? 

‒ How to avoid loss of testing power with smaller samples?
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Also check out an e-poster from AT&T Labs
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