
Adaptive Explainable Neural Networks (AxNN)

Jie Chen 
Joint work with Joel Vaughan, Vijay Nair and Agus Sudjianto
Corporate Model Risk, Wells Fargo

June 5, 2020
© 2019 Wells Fargo Bank, N.A. All rights reserved. For public use.



• Supervised machine learning algorithms have very good predictive performance

• But the biggest criticism is difficulty in interpretation … predictor ෠𝒇 𝒙 is a 
`black box’ – hard to interpret 

• True of all ensemble methods, SVM, neural network 

• We need to be able to interpret and explain the results of ML algorithms:

– Required by regulation

– Get insights from the model and make scientific/business findings

• Some main questions to answer are

– Which variables are important? 

– What is the input-output relationship for each important variable/a subset of important 
variables? Nonlinearity? Interaction?

– How do correlations among variables impact the response surface?

– How can we ensure the relationships from ML are consistent with historical and 
business understanding. 

• Machine learning interpretation is an active research area now.

Importance of making ML transparent
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Interpretation of Input-output relationship

Existing tools for interpretation:

• First order (main) effects

– Partial dependence (PDP) plots (J. H. Friedman 2001)

– Individual conditional expectation (ICE) plots  (Goldstein, et al. 2015)

– Accumulated local effects (ALE) plots (Apley 2016)

– Accumulated total derivative effects (ATDEV) (Liu, et al. 2018)

• Interaction detection

– Post-hoc machine learning diagnostic tools

– 2D PDA and H-statistics (J. H. Friedman 2001, Friedman and Popescu 2008) 

– Tree-based methods: 

– Additive groves of trees (Sorokina, et al. 2008)

– GA2M, to estimate pairwise interactions (Lou, et al. 2013, Caruana, et al. 2015)

– Neural network (NN) related methods

– Interaction detection via MLP neural network learned weights  (Tsang, Cheng and Liu 
2017) 

– Disentangling Learned Interactions via NNs(Tsang, Liu, et al. 2018)
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Intrinsically Interpretable Models: Explainable Neural Network (xNN)

• Additive Index Model (AIM)

• XNN architecture

– Structured network architecture designed to learn an AIM.

– Network structure chosen to match features of AIM:

– Two key structures:

• Projection Nodes: Nodes with linear activation functions. Used for projections and 
final sums. 

• Subnetwork: Collection of nodes that:

o Internally: fully connected, multi-layer, and use nonlinear activation functions.

o Externally: only connected to rest of the network through a univariate input and 
univariate output.

o Used to learn ridge functions, 𝑔𝑘 ⋅
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𝑓 𝒙 = 𝑔1 𝜷1
𝑇𝒙 + 𝑔2 𝜷2

𝑇𝒙 + …+ 𝑔𝐾(𝜷𝐾
𝑇𝒙) 



Generalized additive model network (GAMnet)

• Generalized additive models (GAM) 

𝑓 𝒙 = 𝑔1 𝑥1 + 𝑔2 𝑥2 + …+ 𝑔𝑃 𝑥𝑃

• A special case of xNN: Unlike AIM, each ridge function has only a single dimensional input 
and captures just the main effects of the corresponding predictors:
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Adanet
• The AdaNet algorithm (Cortes, Gonzalvo, et al. 2017) uses NN architecture to directly minimize 
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– ℎ𝑗 is the base learner
– 𝐽 is the number of iterations
– 𝑤𝑗 is the mixture weight for each base learner

– 𝒙𝑖 = 𝑥𝑖,1, … , 𝑥𝑖,𝑃
𝑇

– 𝑁 is number of sample size

– 𝑟 ℎ𝑗 is complexity measurement
– Φ is the loss function

• AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models 
with minimal expert intervention. 
– AdaNet builds on recent AutoML efforts to be fast and flexible while providing learning 

guarantees. 
– AdaNet provides a general framework for not only learning a neural network architecture, but also 

for learning to ensemble to obtain even better models.

• AdaNet grows the ensemble of NNs adaptively. 
– At each iteration, it measures the ensemble loss for multiple candidates and selects the best one 

to move onto for the next iteration.
– At subsequent iterations, the previous subnetworks are frozen, and only newly added subnetworks 

are trained. 

• The main challenge is that it is difficult to interpret the results.
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Focus here: Adaptive explainable neural networks (AxNNs)

• Achieve the dual goals of good predictive performance and model interpretability

• For achieving good predictive performance:

– We build a ensemble of a series of GAMnets and a series of xNNs using a two-stage 
process. 

– This can be done using either boosting or stacking ensemble. 

• For interpretability:

– The main and interaction effects from AxNN are obtained directly from decomposing the 
ridge functions of the AxNN algorithm 

– There is no extrapolation issue as in PDP

– The main and (lower-order) interaction effects from AxNN can be easily visualized.

– An importance measure for ranking the significance of all the detected main and 
interaction effects is provided.

• For computation and tuning:

– Use Google’s open source tool Adanet that can be efficiently accelerated by training with 
distributed computing.

– It borrows strengths of AdaNet and does efficient NN architecture search and requires 
less tuning.
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Formulation of AxNN

• The notions of main effects and higher-order interactions have been extended from two-
way ANOVA to more complex models with many different definitions 

• The formulation and underlying architecture of AxNN is described below. Let 

ℎ 𝐸 𝑌 𝑥 = 𝑓 𝒙 = 𝑓 𝑥1, … , 𝑥𝑃 

• Main effects

– The effect associated with an individual predictor obtained by projecting the original 
model onto the space spanned by GAMs

– AxNN first fits the main effects using GAMnet

• Interaction effects: 

– Any embedded main effects may distort the magnitude of the interaction effects. 

– For example, for 𝑓 𝑥 = log 𝑥1 + 𝑥2 where 𝑥1 ∼ 𝑈 0, 1 , 𝑥2 ∼ 𝑈 0.6, 1 , the R square for 

the linear regression between 𝑓 and 𝑥𝑖′𝑠 is more than 0.98.

– Use xNN to fit an AIM to capture the remaining structure in 𝐼 𝒙

𝐼 𝒙 = 𝑓 𝒙 − 𝑔1 𝑥1 + ⋯+ 𝑔𝑃 𝑥𝑃 .

where interactions can be captured xNN with nonlinear ridge functions
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AxNN flow chat

• In the first stage, an ensemble 
with base learners of GAM 
networks (GAMnet) are used to 
capture the main effects. 

• In the second stage, an 
ensemble of explainable neural 
networks (xNN), that are 
incremental to the first stage, 
adaptively fit additive index 
models. 

• The incremental part from the 
second stage can be interpreted 
as interaction effects, allowing 
for direct interpretation of the 
fitted model. 

9



AxNN boosting ensemble

---------------------------------------------------------------------------------------------------------------
Algorithm 1: AxNN with boosting ensemble
-----------------------------------------------------------------------------------------------------------------------------------------------------
1) For the first stage

For 𝑘 = 1, . . . , 𝐽1
a. Train ℎ𝑘 𝒙 by min

ℎ𝑘

1

𝑁
σ𝑖=1

𝑁 Φ σ𝑗=1
𝑘−1𝑤𝑗ℎ𝑗 𝒙𝒊 + ℎ𝑘 𝒙𝒊 , 𝑦𝑖 with σ𝑗=1

𝑘−1𝑤𝑗ℎ𝑗 𝒙𝒊 fixed, where ℎ𝑘 𝒙 is 

GAMnet. 

b. Train 𝑤1, …𝑤𝑘 by min
𝑤1,…,𝑤𝑘

1

𝑁
σ𝑖=1

𝑁 Φ σ𝑗=1
𝑘−1𝑤𝑗ℎ𝑗 𝒙𝒊 + 𝑤𝑘ℎ𝑘 𝒙𝒊 , 𝑦𝑖 with ℎ1, … , ℎ𝑘 fixed.

2)      For the second stage

Assume 𝐿 = σ𝑗=1
𝐽1 𝑤𝑗ℎ𝑗 𝒙𝒊 are obtained from the first stage, and fix it.

For 𝑘 = 𝐽1 + 1, . . . , 𝐽2
a. Train ℎ𝑘 𝒙 by min

ℎ𝑘

1

𝑁
σ𝑖=1

𝑁 Φ 𝐿 + σ𝑗=𝐽1+1
𝑘−1 𝑤𝑗ℎ𝑗 𝒙𝒊 + ℎ𝑘 𝒙𝒊 , 𝑦𝑖 with σ𝑗=𝐽1+1

𝑘−1 𝑤𝑗ℎ𝑗 𝒙𝒊 fixed, where 

ℎ𝑘 𝒙 is xNN.  

b. Train 𝑤𝐽1+1, …𝑤𝑘 by min
𝑤𝐽1+1,…𝑤𝑘

1

𝑁
σ𝑖=1

𝑁 Φ 𝐿 + σ𝑗=𝐽1+1
𝑘−1 𝑤𝑗ℎ𝑗 𝒙𝒊 + 𝑤𝑘ℎ𝑘 𝒙𝒊 , 𝑦𝑖 with ℎ𝐽1+1, … , ℎ𝑘 fixed.

---------------------------------------------------------------------------------------------------------

*All the penalty terms are ignored in algorithm 1 and 2 for simplicity.
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AxNN stacking ensemble

• Stacking ensemble approach

– It `stacks’ with each base learner trained using the original response variable rather than 
“residuals” .

– For each iteration, AdaNet selects the best subsets among multiple candidate subsets.

– The candidate subnetworks can vary with different depths and over iterations, usually 
with increasing complexity manner, so the base learners are different for different 
iterations. 

• The rationale here is model (weighted) averaging and stacking, similar to random forest:

– The base learner from each iteration is unbiased but has high variance.

– The variance is reduced through weighted averaging/stacking. 

– This method requires strong base learners: deeper or wider NN architecture. 

• In contrast, the rationale behind boosting is similar to gradient boosting machine (GBM):

– It starts with weak learners.

– It boosts  performance over the iterations by fitting to “residuals” and removing bias.

• Both boosting and stack approaches have similar performance.
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Ridge Function decomposition for interpretability

• We do ridge function decomposition by grouping the ridge functions with the same 
projection coefficient patterns: 

– First stage: ridge functions with the same covariate are grouped together to account for 
the main effect of the corresponding covariate. 

– Second stage: apply a coefficient threshold value to the projection layer coefficients of 
each ridge function:

– Projection coefficients bigger than threshold value are considered active;

– Ridge functions with the same set of active projection coefficients are aggregated.

– Different sets of active projection coefficients account for different interaction patterns. 

• The fitted response መ𝑓 can be decomposed into

መ𝑓 = ෍

𝑗=1

𝐽1

𝑤𝑗ℎ𝑗 𝒙𝒊 + ෍

𝑗=𝐽1+1

𝐽2

𝑤𝑗ℎ𝑗 𝒙𝑖 = ෍

𝑝=1

𝑃

𝑀 𝑥𝑖,𝑝 + ෍

𝑞∈𝑆

𝐼𝑞 𝒙𝑖

– 𝑀 𝑥𝑖,𝑝 is the main effect for 𝑥𝑝 and i-th observation;

– 𝐼𝑞 𝒙𝑖 is the interaction effect of the active projection coefficient set 𝑞.

• The importance of main effects and interaction effects can be measured by the standardized 
variance of each effect over the overall response variance.
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Simple synthetic example 

• A simple synthetic example

– 𝑥𝑖 ∼ 𝑈 −1,1 , 𝜖 ∼ 𝑁 0, 0.1 .

• Training/validation/testing data: 50K/25K /25K

– Testing MSE: 0.0107

– Testing R square(R2):  0.9913 

• There is a steep decrease of training and validation 
errors after two GAMnet weak learners. 

13

𝑦 = 𝑥1 + 𝑥2
2 + 𝑥3

3 + 𝑒𝑥4 + 𝑥1𝑥2 + 𝑥3𝑥4 + 𝜖, 

• We can automatically select the architecture from previous iterations and other candidate 
networks with the same number of layers but with one more unit



Simple synthetic example – Ridge function decomposition

• Importance of main/interaction effects
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• Main effect from the first stage

• Interaction effect from the second stage

• Decomposition results are 
consistent with the true model 
form

𝑦 = 𝑥1 + 𝑥2
2 + 𝑥3

3 + 𝑒𝑥4 + 𝑥1𝑥2 + 𝑥3𝑥4 + 𝜖, 



Complicated synthetic examples: Models

• Example 1

𝑓 𝑥 = 𝜋𝑥1𝑥2 2𝑥3 − sin−1 𝑥4 + log 𝑥3 + 𝑥5 −
𝑥9

𝑥10

𝑥7

𝑥8
− 𝑥2𝑥7,

– where 𝑥1, 𝑥2, 𝑥3, 𝑥6, 𝑥7, 𝑥9 ∼ 𝑈 0, 1 , 𝑥4, 𝑥5, 𝑥8, 𝑥10 ∼ 𝑈 0.6, 1 .

• Example 2:

𝑓 𝑥 = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥3𝑥4 + 2𝑥4𝑥5𝑥6 + 𝑥4

3𝑥7 + 𝑥5𝑥6𝑥7 + 𝑥7𝑥8𝑥9𝑥10,

– where 𝑥1, … , 𝑥10 ∼ 𝑈 −1, 1

• Example 3:

𝑓 𝑥 = 𝑥1𝑥2 + 2𝑥3+𝑥5+𝑥6 + 2𝑥3+𝑥4+𝑥5+𝑥7 + 𝑠𝑖𝑛 𝑥7𝑠𝑖𝑛 𝑥8 + 𝑥9 + 𝑎𝑟𝑐𝑐𝑜𝑠 0.9𝑥10 ,

– where 𝑥1, … , 𝑥10 ∼ 𝑈 −1, 1

• Example 4:

𝑓 𝑥 =
1

1 + 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + exp 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8𝑥9𝑥10,

– where 𝑥1, … , 𝑥10 ∼ 𝑈 −1, 1
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Complicated synthetic examples: Performance

• For both boosting and stacking, we considered only one layer for the ridge function 
subnetworks:

– AxNN boosting starts with weak GAMnet and xNN networks: xNN with 2 subnets and 
each ridge subnetwork with 3 or 5 units. 

– The stacking AxNN starts with stronger GAMnet and xNN networks: xNN with 15 or 20 
subnets and each ridge subnetwork with 10 units.  

• AxNN stacking has the best performance over all the four examples; AxNN boosting and 
FFNN are close; RF has the worst performance. 
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Complicated synthetic examples—Ridge function decomposition
• For all four examples, almost all the main effects from the first stage correctly capture the 

true projected main effects (correlation close to 1).  

• The second stage also detects and captures significant high order interactions correctly 
(high correlations with the true pure interaction terms). Estimation of insignificant 
interactions are less accurate and unstable

• When the interactions have a big overlap, the union of the interactions (with higher order) 
can be detected instead. 
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Conclusions

• AxNN is a new machine learning framework that achieves the dual goals of predictive 
performance and model interpretability. 

• We have introduced and studied the properties of two-stage approaches, with GAMnet
base learners to capture the main effects and xNN base learners to capture the interactions.

• The stacking and boosting algorithms have comparable performances. Both decompose the 
fitted responses into main effects and higher-order interaction effects through ridge 
function decomposition. 

• AxNN borrows strength of AdaNet and does efficient NN architecture search and requires 
less tuning.

• Paper link: https://arxiv.org/abs/2004.02353
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