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Importance of making ML transparent

e Supervised machine learning algorithms have very good predictive performance

« But the biggest criticism is difficulty in interpretation ... predictor f(x) is a
“black box’ = hard to interpret

e True of all ensemble methods, SVM, neural network

e We need to be able to interpret and explain the results of ML algorithms:
— Required by regulation
— Get insights from the model and make scientific/business findings

e Some main questions to answer are
— Which variables are important?

— What is the input-output relationship for each important variable/a subset of important
variables? Nonlinearity? Interaction?

— How do correlations among variables impact the response surface?

— How can we ensure the relationships from ML are consistent with historical and
business understanding.

e Machine learning interpretation is an active research area now.



Interpretation of Input-output relationship

Existing tools for interpretation:

 First order (main) effects
— Partial dependence (PDP) plots (J. H. Friedman 2001)
— Individual conditional expectation (ICE) plots (Goldstein, et al. 2015)
— Accumulated local effects (ALE) plots (Apley 2016)
— Accumulated total derivative effects (ATDEV) (Liu, et al. 2018)

 Interaction detection

— Post-hoc machine learning diagnostic tools
— 2D PDA and H-statistics (J. H. Friedman 2001, Friedman and Popescu 2008)

— Tree-based methods:
— Additive groves of trees (Sorokina, et al. 2008)
— GA2M, to estimate pairwise interactions (Lou, et al. 2013, Caruana, et al. 2015)

— Neural network (NN) related methods
— Interaction detection via MLP neural network learned weights (Tsang, Cheng and Liu

2017)

— Disentangling Learned Interactions via NNs(Tsang, Liu, et al. 2018)



Intrinsically Interpretable Models: Explainable Neural Network (xNN)

o Additive Index Model (AIM)
f(x) = g1(B1x) + g2 (BEx) + ... + g (B )
e XNN architecture
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— Structured network architecture designed to learn an AIM.
— Network structure chosen to match features of AIM:

— Two key structures:

* Projection Nodes: Nodes with linear activation functions. Used for projections and
final sums.

» Subnetwork: Collection of nodes that:
o Internally: fully connected, multi-layer, and use nonlinear activation functions.

o Externally: only connected to rest of the network through a univariate input and
univariate output.

o Used to learn ridge functions, g (-)



Generalized additive model network (GAMnet)

e Generalized additive models (GAM)

f(x) = g1(x1) + g2(x2) + ...+ gp (xp)

« A special case of xNN: Unlike AIM, each ridge function has only a single dimensional input
and captures just the main effects of the corresponding predictors:

3

o O



Adanet

e The AdaNet algorithm (Cortes, Gonzalvo, et al. 2017) uses NN architecture to directly minimize
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— h; is the base learner
— Jis the number of iterations
— wj is the mixture weight for each base learner

- X = (.X'i’l, ...,.X'i,p)T

— N is number of sample size

- r(hj) is complexity measurement
— @ is the loss function

e AdaNet s a lightweight TensorFlow-based framework for automatically learning high-quality models
with minimal expert intervention.

— AdaNet builds on recent AutoML efforts to be fast and flexible while providing learning
guarantees.

— AdaNet provides a general framework for not only learning a neural network architecture, but also
for learning to ensemble to obtain even better models.

« AdaNet grows the ensemble of NNs adaptively.

— At each iteration, it measures the ensemble loss for multiple candidates and selects the best one
to move onto for the next iteration.

— At subsequent iterations, the previous subnetworks are frozen, and only newly added subnetworks
are trained.

e The main challenge is that it is difficult to interpret the results.



Focus here: Adaptive explainable neural networks (AXxNNs)

Achieve the dual goals of good predictive performance and model interpretability

For achieving good predictive performance:

— We build a ensemble of a series of GAMnets and a series of xNNs using a two-stage
process.

— This can be done using either boosting or stacking ensemble.

For interpretability:

— The main and interaction effects from AxNN are obtained directly from decomposing the
ridge functions of the AxNN algorithm

— There is no extrapolation issue as in PDP
— The main and (lower-order) interaction effects from AxNN can be easily visualized.

— An importance measure for ranking the significance of all the detected main and
interaction effects is provided.

For computation and tuning:
— Use Google’s open source tool Adanet that can be efficiently accelerated by training with
distributed computing.

— It borrows strengths of AdaNet and does efficient NN architecture search and requires
less tuning.



Formulation of AXNN

e The notions of main effects and higher-order interactions have been extended from two-
way ANOVA to more complex models with many different definitions

e The formulation and underlying architecture of AxNN is described below. Let

h(E(Y|x)) = f(x) = f(xq, ..., Xp)

e Main effects
— The effect associated with an individual predictor obtained by projecting the original
model onto the space spanned by GAMs

— AxNN first fits the main effects using GAMnet

 Interaction effects:
— Any embedded main effects may distort the magnitude of the interaction effects.
— For example, for f(x) = log(x; + x,) where x; ~ U(0,1),x, ~ U(0.6,1), the R square for
the linear regression between f and x;'s is more than 0.98.
— Use xNN to fit an AIM to capture the remaining structure in I(x)
I(x) = f(x) = [91(x1) + -+ gp (xp)].
where interactions can be captured xNN with nonlinear ridge functions



AxNN flow chat
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AxXNN boosting ensemble

Algorithm 1: AxNN with boosting ensemble

1) For the first stage
Fork =1,...,J;

a.

b.

Train hy (x) by nrllin%Z{-\Ll CIJ(Z -1 W]h (x) + hie(x;), y;) with Z -1 W]h (x;) fixed, where hj (x) is
k

GAMnet.
Train wy, ... w), by min = CI)( -1 W]h (x) + wichi (x;), ¥;) with hy, ..., by, fixed.
We,... Wi N

2)  For the second stage

Assume L = Z§1=1 w;h; (x;) are obtained from the first stage, and fix it.
Fork =]1 + 1,...,]2

a.

. 1 .
Train hy (x) by nrll}cnﬁz V(L + X52] o wiky () + R (x0), y;) with 2527 ) wyky(x;) fixed, where

hy (x) is XNN.
Train wy 41, ...Wg by min %Z LP(L+ Z] =7, +1W]h (%) + wihi(x;),y;) with hy 41, .., hy fixed.

W]1+1,...Wk

*All the penalty terms are ignored in algorithm 1 and 2 for simplicity.
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AxNN stacking ensemble

Stacking ensemble approach

— It “stacks’ with each base learner trained using the original response variable rather than
“residuals”.

— For each iteration, AdaNet selects the best subsets among multiple candidate subsets.

— The candidate subnetworks can vary with different depths and over iterations, usually
with increasing complexity manner, so the base learners are different for different
iterations.

The rationale here is model (weighted) averaging and stacking, similar to random forest:
— The base learner from each iteration is unbiased but has high variance.

— The variance is reduced through weighted averaging/stacking.

— This method requires strong base learners: deeper or wider NN architecture.

In contrast, the rationale behind boosting is similar to gradient boosting machine (GBM):
— It starts with weak learners.
— It boosts performance over the iterations by fitting to “residuals” and removing bias.

Both boosting and stack approaches have similar performance.
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Ridge Function decomposition for interpretability

e We do ridge function decomposition by grouping the ridge functions with the same
projection coefficient patterns:

— First stage: ridge functions with the same covariate are grouped together to account for
the main effect of the corresponding covariate.

— Second stage: apply a coefficient threshold value to the projection layer coefficients of
each ridge function:

— Projection coefficients bigger than threshold value are considered active;
— Ridge functions with the same set of active projection coefficients are aggregated.
— Different sets of active projection coefficients account for different interaction patterns.

e The fitted response f can be decomposed into

J1 J2 P
f = z W]h](xl) + z th](xl) = z M(Xi’p) + z Iq(xl-)
j=1 j=J1+1 p=1 qES

— M(x; ) is the main effect for x,, and i-th observation;
— I,(x;) is the interaction effect of the active projection coefficient set q.

e The importance of main effects and interaction effects can be measured by the standardized
variance of each effect over the overall response variance.
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Simple synthetic example

A simple synthetic example

Yy =2x; + x5 + x5 +e* +x1x, + X3%4 + €,

- X; ~ U(_l’l)’ € ~ N(O’ 01) . Adanet-SNN+XNN: MSE .
 Training/validation/testing data: 50K/25K /25K

— Testing MSE: 0.0107 s \

— Testing R square(R2): 0.9913 . \
e There s a steep decrease of training and validation \

errors after two GAMnet weak learners.

o 1 2 3 4 > & T 8 ] 10
iterations

We can automatically select the architecture from previous iterations and other candidate
networks with the same number of layers but with one more unit

Table 1: Neural network type and architectures over the iterations

stage 1 1 2 2 2 2 2 2 2 2 2 2
iteration 1 2 1 2 3 4 5 6 7 a 9 10
weak learner type | GAMnet | GAMnet | xNN | xNN | xNN | xNN | xNN | xNN | xNN | xNN | NN | xNN
# of layer 1 1 1 1 1 1 1 1 1 1 1 1
# of units 5 ) 5] 7 i) a 3 9 9 9 10 11




Simple synthetic example - Ridge function decomposition

Yy =2x; + x5 + x5 +e* +x1x, + X3%4 + €,

« Importance of main/interaction effects

Captured Importance based on the selected ridge functions
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e Decomposition results are

consistent with the true model

form

e Main effect from the first stage
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Complicated synthetic examples: Models

Example 1

xX1X . —1 Yo |X7

f(x) = m*1¥2 /2x5 —sin™ " x4 + log(xs + x5) —— |— — x3x,
X10 .| X8
— where x4, X, X3, Xg, X7, X9 ~ U(0, 1), x4, x5, xg,x10 ~ U(0.6, 1).
Example 2:
F(X) = xf + x5 + x5 + x3%4 + 2x,X5%¢ + X3X; + XsXeX7 + X7XgXoXqg,
- Where xl, ,X10 ~ U(_l, 1)
Example 3:
f(x) = xyx, + 2%3t¥s¥Xe 4 PXsHXatXsHX7 4 gin(x,sin(xg + x9)) + arccos(0.9xy),

— where x4, ..., %19 ~ U(—1,1)

Example 4:

X) = + Jexp(x, + xc) + | Xg + X7| + XgXo9X10,
f(x) 1+xf+x§+x§ \/ p(x4 5) + [xg 71 8X9X10

— where x4, ...,x19 ~ U(—1,1)
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Complicated synthetic examples: Performance

« For both boosting and stacking, we considered only one layer for the ridge function
subnetworks:

— AxNN boosting starts with weak GAMnet and XNN networks: xXNN with 2 subnets and
each ridge subnetwork with 3 or 5 units.

— The stacking AXNN starts with stronger GAMnet and xNN networks: xXNN with 15 or 20
subnets and each ridge subnetwork with 10 units.

« AXNN stacking has the best performance over all the four examples; AxXNN boosting and
FFNN are close; RF has the worst performance.

Table 2: test performance for the complicated synthetic examples (no error)

ground  AXNN  AxNN
No metric truth boosting  stacking RF XGB FFNN

Example 1 MSE 0 0.0013 0.0004 0.0110 0.0018 0.0016
R2 score 1 0.9984 0.9995 0.9866 0.9978 0.9980

Example 2 MSE 0 0.0027 0.0012 0.1654 0.0138 0.0204
R2 score 1 0.9956 0.9981 0.7351 09779 0.9673

Example 3 MSE 0 0.0027 0.0007 0.1880 0.0150 0.0085
R2 score 1 0.9993 0.9998 0.9539 09963 0.9979

Example 4 MSE 0 0.0010 0.0008 0.0515 0.0033 0.0019
R2 score 1 0.9980 0.9983 0.8926 0.9931  0.9960
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Complicated synthetic examples—Ridge function decomposition

« For all four examples, almost all the main effects from the first stage correctly capture the
true projected main effects (correlation close to 1).

« The second stage also detects and captures significant high order interactions correctly

(high correlations with the true pure interaction terms). Estimation of insignificant
interactions are less accurate and unstable

« When the interactions have a big overlap, the union of the interactions (with higher order)

can be detected instead.
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Figure 9: ridbe function decomposition for Synthetic Example 2
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Figure 10: ridge function decomposition for Synthetic Example 3
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Conclusions

« AXNN is a new machine learning framework that achieves the dual goals of predictive
performance and model interpretability.

e We have introduced and studied the properties of two-stage approaches, with GAMnet
base learners to capture the main effects and xNN base learners to capture the interactions.

e The stacking and boosting algorithms have comparable performances. Both decompose the
fitted responses into main effects and higher-order interaction effects through ridge
function decomposition.

« AxXNN borrows strength of AdaNet and does efficient NN architecture search and requires
less tuning.

e Paper link: https://arxiv.org/abs/2004.02353
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