SECURE & INTERPRETABLE A

Polo Chau

Associate Professor Associate Director, MS Analytics Associate Director of Corporate Relations, ML Center Georgia Tech

Polo Club of Data Science

Scalable interactive tools to make sense of complex large-scale datasets and models

Polo Club of Data Science poloclub.github.io

Human-Centered Al

ActiVis

Visual Exploration of Facebook Deep Neural Network Models

Discovering Intersectional Bias

Discovery of Intersectional Bias in Machine Learning Using Automatic Subgroup Generation

ML Security & Fraud

ShapeShifter

1st Targeted Physical Attack on Faster R-CNN **Object Detector**

MARCO

Fake Review Detection

SDM'14 Best Student Paper

Large Graph Mining & Visualization

VIGOR

Interactive Visual Exploration of Graph Query Results

M-Flash

Billion-Scale Graph Computation by Bimodal Block Processing

Atlas

Local Graph Exploration in a Global Context

Social Good & Health

Fast, practical defense for

TAudience Appreciation

SHIELD

deep learning

Award, Runner-up

DeepPop

Deep Learning on Satellite Imagery for Population Estimation

T Microsoft Al for Earth

Firebird

Predicting Fire Risk in Atlanta

KDD'16 Best Student Paper, runner-up

Atlanta Fire Rescue Department

mHealth Visual Discovery Dashboard

Making Sense of Mobile Health Data

Current Research Thrusts

Secure

Interpretable

Why focus on them? How are they related?

Al now used in safety-critical applications. Important to study threats & countermeasures.

How a Self-Driving Uber Killed a Pedestrian in Arizona

Al Security Problems Are Everywhere

"THE TOASTER HAS BEEN HACKED INTO THINKING IT'S A BLENDER,"

Smart toaster does exist!

Al Security is becoming increasingly important

Source: Cisco

incidents
reported by U.S. federal agencies

Source: US Department of Homeland Security

How do we know if a defense for Al is working?

Al models often used as black-box

Interpretable

Interpretable

Via scalable, interactive, usable interfaces to help people understand complex, large-scale ML systems.

Secure Al

ShapeShifter First attack fooling object detectors

SHIELD Real-time Defense

REST Energy efficient, noise-robust sleep tracking

Interpretable Al

Summit Scalable interpretation for deep learning

GAN Lab & CNN Explainer Interactive learning

ShapeShifter

ECML-PKDD 2018

First Targeted *Physical*Adversarial Attack for Object Detection

Shang-Tse Chen Georgia Tech

Cory Cornelius Intel

Jason Martin Intel

Polo Chau Georgia Tech

Challenges of Physically Attacking Faster R-CNN

1. Multiple region proposals

2. Distances, angles, lightings

Our Solution: Fool Multiple Region Proposals

Minimize: sum of classification losses + deviation loss

Only perturb RED area
Human eye is less sensitive
to changes in darker color

Our Solution: Robust to Real-World Distortions

Adapt Expectation over Transformation [Athalye et al, ICML'18]

Optimize over different backgrounds, scales, rotations, lightings

Untargeted Attack

ShapeShifter Motivates DARPA Program GARD (Defense for AI)

State of the art: few physical attacks

Graffiti:

(Brown et al., Google, 2017)

3D Printed Objects:

(Athalye et al., MIT, 2017)

Fooling Deep Neural Networks with Physical Attacks

Security and Privacy Research, Intel Labs
Shang-tse Chen | Cory Cornelius | Jason Martin

(Intel / GTECH 2018)

- All physical attacks to date are White Box
- No current consideration of resource constraints

Highlights **ShapeShifter** as the state-of-the-art physical attack

https://www.darpa.mil/attachments/GARD_ProposersDay.pdf

SHIELD Fast, Practical Defense for Image Classification

KDD'18 Audience Appreciation Award (runner-up)
KDD'19 LEMINCS

[Open-sourced]

Nilaksh Das

Madhuri Shangbogue

Shang-Tse Chen

-red -lohman

Cory Cornelius

Li Chen

Michael Kounavis

Polo Chau

Adversarial Machine Learning Landscape

"Chain Mail" (Attacked)

Labrador Retriever

Secure Heterogeneous Image Ensemble with Localized Denoising

Real-time Compression Preprocessing

Vaccinated
Deep Neural
Network Ensemble

Correctly Classified

Correctly Classified

SHIELD leverages JPEG compression

JPEQ Quality 80

JPEQ Quality 60

JPEQ Quality 40

JPEQ Quality 20

SHIELD's SLQ applies JPEG compression of a random quality to each 8 x 8 block of the image

^{*} larger blocks shown for presentation

Defense Runtime Comparison (in seconds; shorter is better)

REST: energy-efficient, noise-robust sleep tracking

Efficiency Measurements

SUMMIT

Scalably summarize and interactively visualize neural network feature representations for millions of images

SUMMIT

Scalably summarize and interactively visualize neural network feature representations for millions of images

GAN Lab

Understanding Complex Deep Generative Models using Interactive Visual Experimentation

Minsuk Kahng Georgia Tech

Nikhil Thorat Google

Polo Chau Georgia Tech

Fernanda Viégas Google

Martin Wattenberg Google

Generative Adversarial Networks (GANs)

"the most interesting idea in the last 10 years in ML" - Yann LeCun

Face images generated by BEGAN

Why GANs are hard?

A GAN uses two competing neural networks

GAN Lab is Live! Try at bit.ly/gan-lab

30K visitors, 135 countries ♥ 1.9K Likes ♥ 1.9K Dikes ♥ 1.9K Likes ♥ 1.9K Dikes ♥

SECURE & INTERPRETABLE A

Polo Chau

Associate Professor Associate Director, MS Analytics Associate Director of Corporate Relations, ML Center Georgia Tech

