

Data For Good: Ensuring the Responsible Use of Data to Benefit Society

Jeannette M. Wing

Avanessians Director of the Data Science Institute and Professor of Computer Science Columbia University

> Adjunct Professor of Computer Science Carnegie Mellon University

Symposium on Data Science and Statistics Virtual Pittsburgh, PA June 5, 2020

Data Life Cycle



What is Data Science?

Definition:

Data science is the study of extracting value from data.

Mission

Advance the state of the art in data science

Transform all fields, professions, and sectors through the application of data science

Ensure the responsible use of data to benefit society

Data for Good

DATA SCIENCE INSTITUTE COLUMBIA UNIVERSITY

Graduate School of Architecture, Planning and Preservation School of the Arts Graduate School of Arts and Sciences Barnard College Columbia Business School

17 Schools, Colleges, and Institutes

College of Dental Medicine The Earth Institute Columbia Engineering School of International and Public Affairs Columbia Journalism School Columbia Law School School of Nursing Vagelos College of Physicians and Surgeons Mailman School of Public Health School of Social Work Teachers College Zuckerman Institute

Cross-Cutting Centers

datascience.columbia.edu/data-science-centers

Foundations

Computing Systems

Cybersecurity

Smart Cities

Data, Media, and Society



Financial Analytics

Health Analytics



Sense, Collect, and Move

Computational Social Science

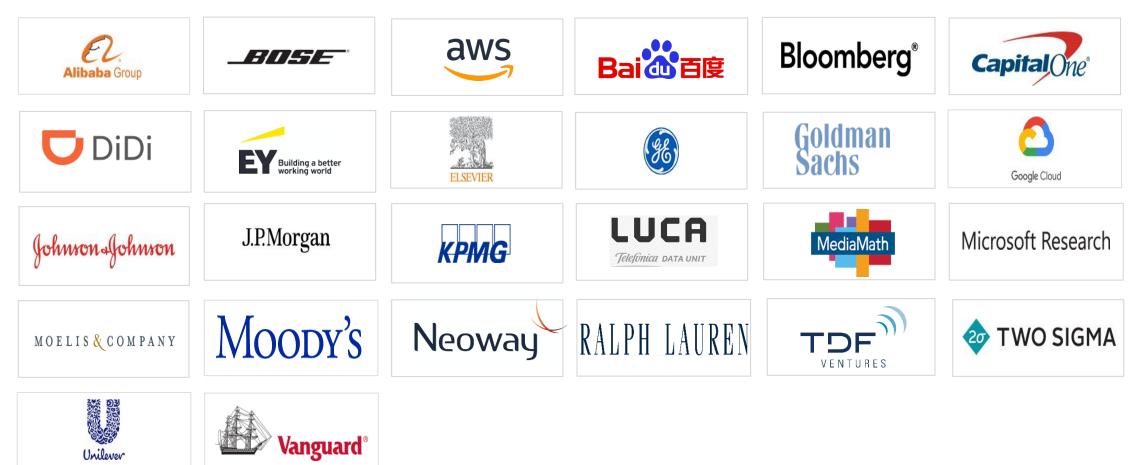
Education

Materials Discovery Analytics

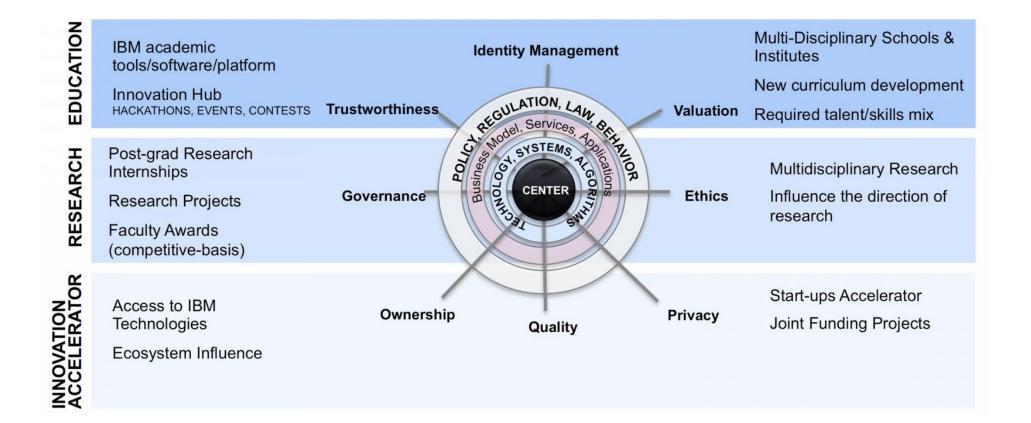
Collaboratory (Columbia Entrepreneurship + DSI)

Industry Affiliates Program

industry.datascience.columbia.edu



Columbia-IBM Center on Blockchain and Data Transparency



Mission

Advance the state of the art in data science

Transform all fields, professions, and sectors through the application of data science

Ensure the responsible use of data to benefit society

Multiple Causal Inference

Yixin Wang and David M. Blei, "The Blessings of Multiple Causes," arXiv:1805.06826v2 [stat.ML], June 19, 2018.

Understanding Causal Effect

What happens to movie revenue if we place an actor in a movie?

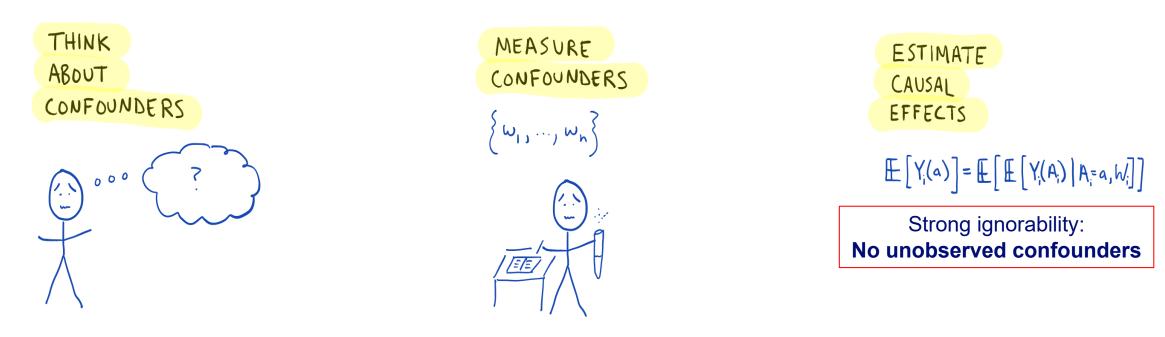
Goal: E[Y_i(*a*)]

E[**Y**_i | do(**a**)]

Title	Cast	Revenue
Avatar	{Sam Worthington, Zoe Saldana, Sigourney Weaver, Stephen Lang, }	\$2788M
Titanic	{Kate Winslet, Leonardo DiCaprio, Frances Fisher, Billy Zane, }	1845M
The Avengers	{Robert Downey Jr., Chris Evans, Mark Ruffalo, Chris Hemsworth, }	1520M
Jurassic World	{Chris Pratt, Bryce Dallas Howard, Irrfan Khan, Vincent D'Onofrio, }	1514M
Furious 7	{Vin Diesel, Paul Walker, Dwayne Johnson, Michelle Rodriguez, }	1506M
Avengers: Age of Ultron	{Robert Downey Jr., Chris Hemsworth, Mark Ruffalo, Chris Evans, }	1405M
Frozen	{Kristen Bell, Idina Menzel, Jonathan Groff, Josh Gad, }	1274M
Iron Man 3	{Robert Downey Jr., Gwyneth Paltrow, Don Cheadle, Guy Pearce, }	1215M
Minions	{Sandra Bullock, Jon Hamm, Michael Keaton, Allison Janney, }	1157M
Captain America: Civil War	{Chris Evans, Robert Downey Jr., Scarlett Johansson, Sebastian Stan, }	\$1153M
:	:	:
•		•

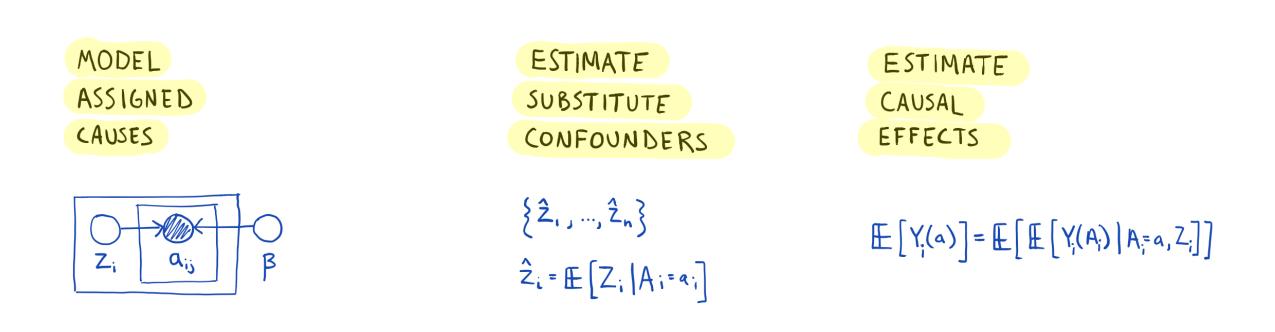
Many Applications

Classical Causal Inference



- **Confounders** affect both the causes and the outcomes.
- We should correct for all confounders in causal inference, which requires in theory to measure **all confounders**.
- But, whether we have measured all confounders is (famously) untestable.

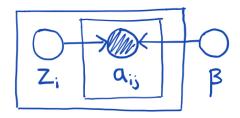
New Idea: The Deconfounder



- **1. Fit** a "local latent-variable model" of the assigned causes (e.g., Factor Analysis).
- 2. Infer the latent variable for each data point; it is a substitute confounder.
- 3. **Correct** for the substitute confounder in a causal inference.

New Idea: The Deconfounder

MODEL ASSIGNED CAUSES



ESTIMATE SUBSTITUTE CONFOUNDERS

 $\{ \hat{z}_i, \dots, \hat{z}_n \}$ $\hat{z}_i = \mathbb{E} \left[Z_i | A_i = \alpha_i \right]$

ESTIMATE CAUSAL EFFECTS

 $\mathbb{E}\left[Y_{i}(\alpha)\right] = \mathbb{E}\left[\mathbb{E}\left[Y_{i}(A_{i}) \mid A_{i}=\alpha, Z_{i}\right]\right]$

Assumption: No unobserved single-cause confounder

Weaker assumptions: No unobserved single-cause confounder.

(But no need to measure all confounders.)

Checkable procedure: We can check if the substitute confounder is good.

Unbiased inference: We prove the deconfounder gives unbiased causal inference.

Back to Movies

- With the deconfounder,
 - (1) Sean Connery's (James Bond) value goes up.(2) Bernard Lee's (M) and Desmond Llewelyn's (Q) values go down.
- We can now answer questions such as: What happens to revenue if we place Desmond Llewelyn in *A Beautiful Mind*? How about Sean Connery?
- The deconfounder corrects for unobserved confounders: genre, sequel, etc.

Advance the state of the art in data science

Transform all fields, professions and sectors through the application of data science

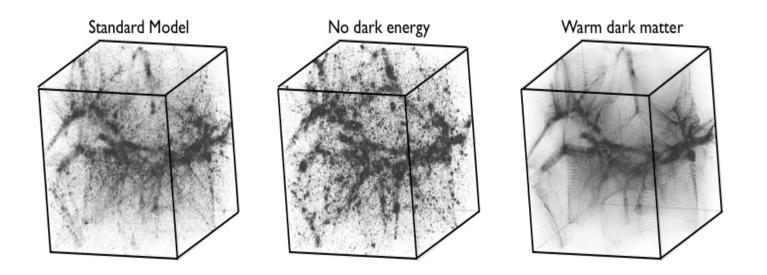
Ensure the responsible use of data to benefit society

Biology and Big Data: Understanding Tumor Microbiome to Combat Cancer



Geller, L.*, Barzily-Rokni, M.*, Danino, T., Shee, K., Thaiss, C., Livny, R., Avraham, R., Barczak, A., Zwang, Y., Mosher, C., Smith, D., Chatman, K., Skalak, M., Bu, J., Cooper, Z., Tompers, F., Ligorio, M., Qian, Z., Muzumdar, M., Michaud, Gurbatri, C., M., Mandinova, A., Garrett, W., Jacks, T., Ogino, S., Ferrone, C., Thayer, S., Warger, J., Trauger, S., Johnston, S., Huttenhower, C., Gevers, D., Bhatia, S., Golub, T. Straussman, R. Tumor-microbiome mediated resistance to gemcitabine. *Science* 357, 1156–1160 (2017).

Cosmology and Neural Networks

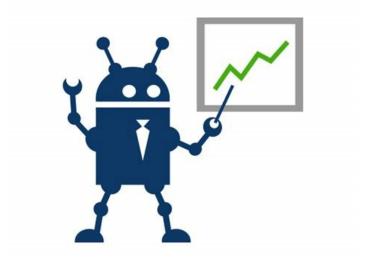


Dezso Ribli, Balint Armin Pataki, Jose Manuel Zorrilla Matilla, Daniel Hsu, Zoltan Haiman, Istvan Csabai, "Weak lensing cosmology with convolutional neural networks on noisy data," Monthly Notices of the Royal Astronomical Society, Volume 490, Issue 2, December 2019, pp. 1843-1860.

Monopsony: Economics and Machine Learning

Arindrajit Dube, Jeff Jacobs, Suresh Naidu, and Siddharth Suri, "Monopsony in Online Labor Markets," forthcoming, *American Economic Review: Insights,* August 2018.

Robo-Advising: Finance and Reinforcement Learning

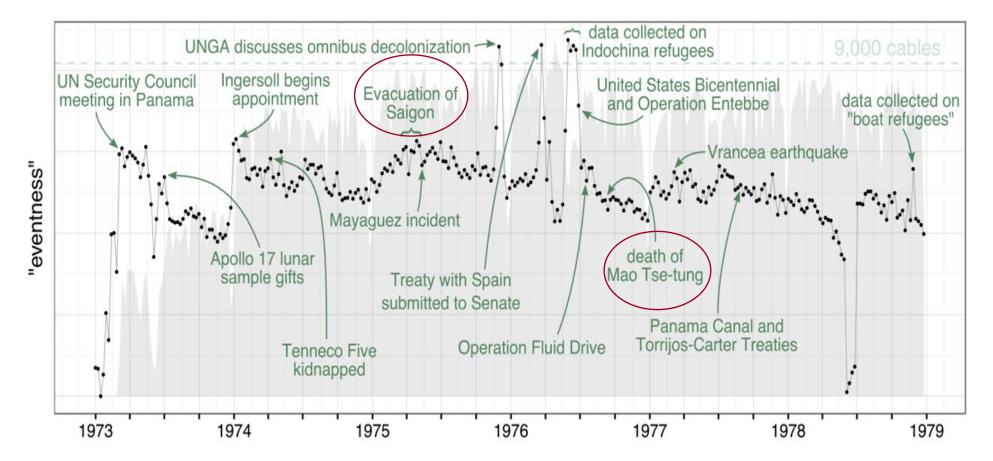


Agostino Capponi, Octavio Ruiz Lacedelli, and Matt Stern, "Robo-Advising as a Human-Machine Interaction System", August 2018, preprint.

Event Discovery: History and Topic Modeling

Allison J. B. Chaney, Hanna Wallach, **Matthew Connelly**, and **David M. Blei**, Detecting and characterizing Events, in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, November 2016.

Distinguish between topics describing "business as usual" and those that deviate from such patterns.



Data for Good: responsible use of data

FAT* → **Trustworthy AI**

Fairness Accountability Transparency

Ethics

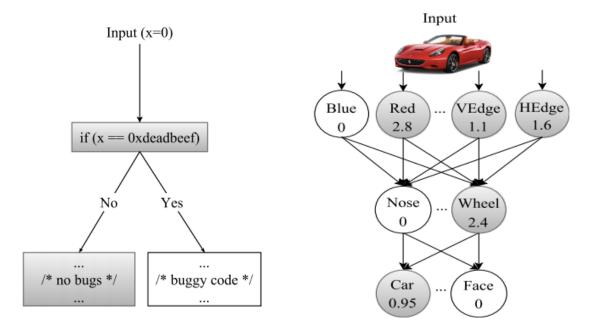
Robustness

Interpretability/Explainability

Privacy

Reliability Availability Usability

DeepXplore: Testing Deep Learning Systems



Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana, "Deep Xplore: Automated Whitebox Testing of Deep Learning Systems, *Proceedings of the 26th ACM Symposium on Operating Systems Principles*, October 2017, Best Paper Award.

DeepXplore

https://github.com/peikexin9/deepxplore

Seed, No accident

Darker, Accident

- Efficiently and systematically tests DNNS of hundreds of thousands of neurons without labeled data (only needs unlabeled seeds)
- Key ideas: neuron coverage (akin to code coverage), differential testing, and domain-specific constraints for focusing on realistic inputs
- Testing as a joint optimization problem (maximize both number of differences and neuron coverage)
- Found 1000s of fatal errors in 15 state-of-the-art DNNs for ImageNet, self-driving cars, and PDF/Android malware

DP and Machine Learning: PixelDP

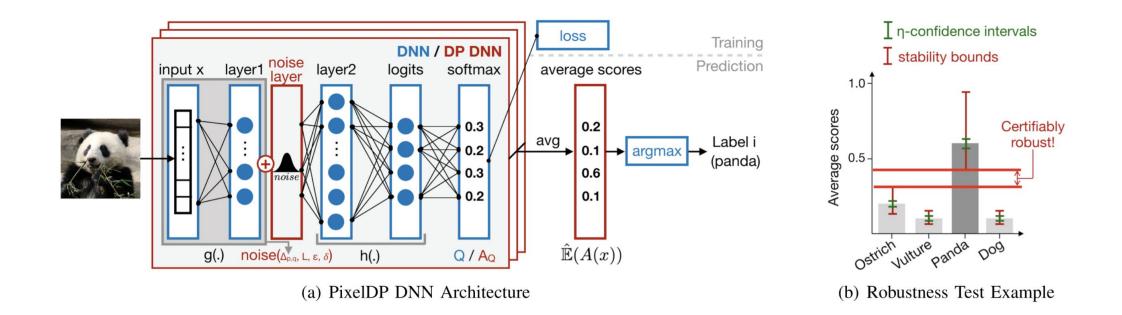
Problem

STOP - File and a sign

Mathias Lecuyer, Baggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana, "Certified Robustness to Adversarial Examples with Differential Privacy, arXiv:1802.03471v2, June 26, 2018, to appear IEEE Security and Privacy ("Oakland") 2019.

Solution

1. Add a noise layer a la Differential Privacy



2. Provable guarantee from DP says classifier is robust to some degree of input perturbations.

Data for Good: tackling societal grand challenges

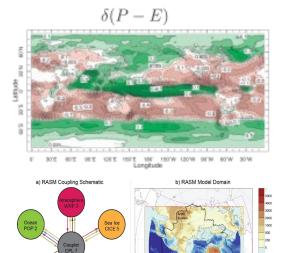
PANGEO: Climate Science and Big Data

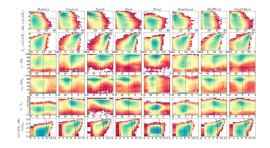
https://pangeo-data.github.io/

PI: Ryan Abernathey (Dept. of Earth & Env. Sci., LDEO, Columbia University)

Co-PIs: Chiara Lepore, Michael Tippett, Naomi Henderson, Richard Seager (LDEO) Kevin Paul, Joe Hamman, Ryan May, Davide Del Vento (National Center for Atmospheric Research) Matthew Rocklin (Anaconda; formerly Continuum Analytics)

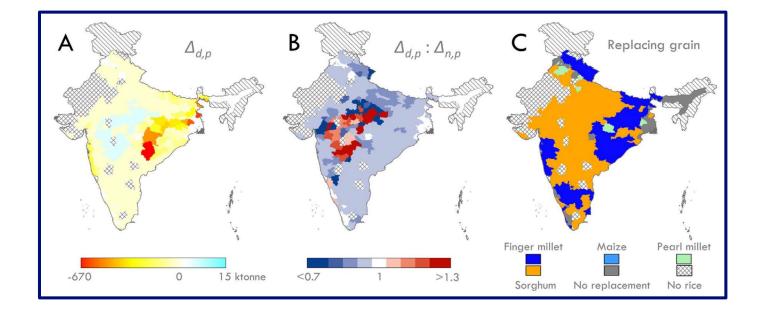
Collaborators: Gavin Schmidt (APAM, Frontiers in Computing Systems (DSI), NASA Goddard Institute for Space Studies (director), V. Balaji (National Oceanographic and Atmospheric Administration Geophysical Fluid Dynamics Lab)





Lamont-Doherty Earth Observatory Columbia University | Earth Institute

Data Science and Agriculture



Kyle F. Davis, Ashwini Chhtre, Narasimha D. Rao, Deepti Singh, Ruth DeFries, *Environmental Research Letters,* Volume: 14, Article number: 064013, <u>https://doi.org/10.1088/1748-9326/ab22db</u>

Main Results

Picture from The Economic Times, June 18, 2019

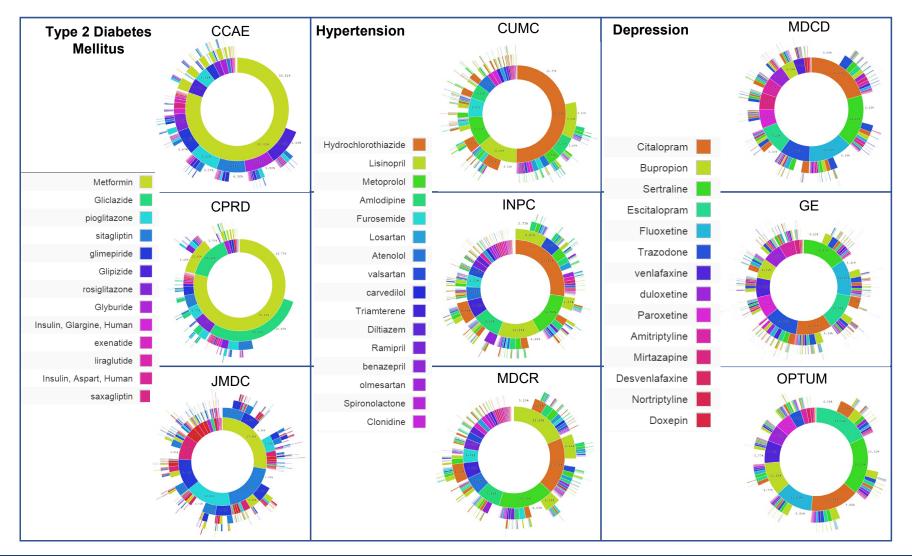
- If India's crop production continues to homogenize towards rice, food supply in the country may be more vulnerable to increasingly frequent climate shocks (e.g., droughts, extreme heat).
- Increasing the share of production contributed by coarse cereals (such as millets and sorghum) could improve the resilience of India's food production against climatic changes, especially in the places where coarse cereal yields are already comparable to rice yields.
- More broadly, diversifying crop mixes in agriculturally important areas can help buffer against some aspects of climate change such as droughts and extreme heat.

Observational Health Data Sciences and Informatics (OHDSI, pronounced "Odyssey")

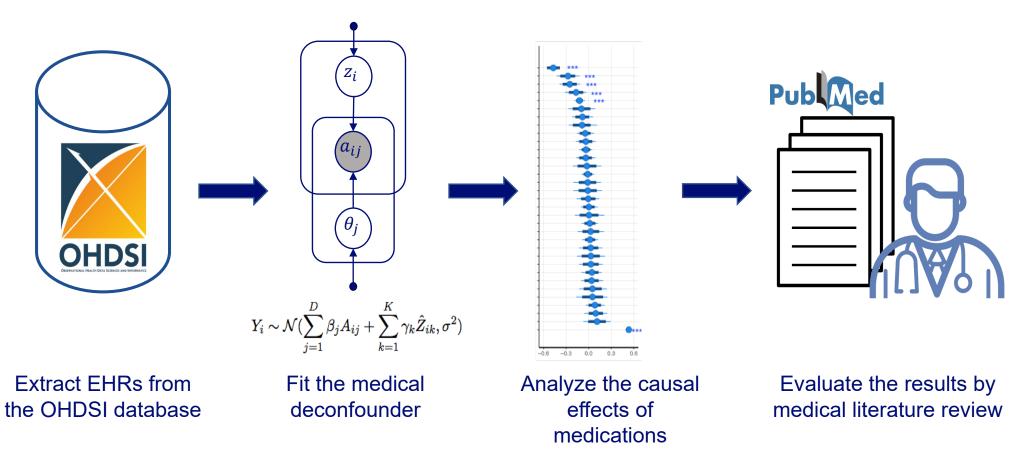
Goal: 1 billion patient records for observational research 25 countries 200 researchers 80 databases 600 million patient records

George Hripcsak, Patrick B. Ryan, Jon D. Duke, Nigam H. Shah, Rae Woong Park, Vojtech Huser, Marc A. Suchard, Martijn J. Schuemie, Frank J. DeFalco, Adler Perotte, Juan M. Banda, Christian G. Reich, Lisa M. Schilling, Michael E. Matheny, Daniella Meeker, Nicole Pratt, and **David Madigan**, "Characterizing treatment pathways at scale using the OHDSI network," PNAS Early Edition, April 2016.

Heterogeneity of Observational Research Results

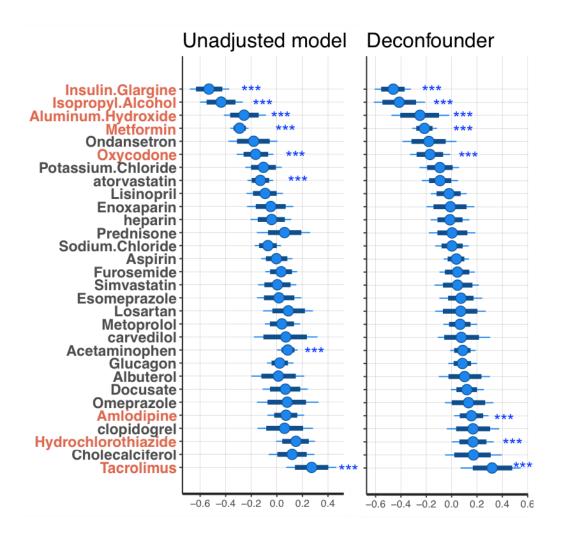


The Medical Deconfounder



Linying Zhang, Yixin Wang, Anna Ostropolets, Jami J. Mulgrave, David M. Blei, George Hripcsak, "The Medical Deconfounder: Assessing Treatment Effect with Electronic Health Records (EHRs)," arXiv:1904.02098v1, April 2019.

Treatment Effects on Hemoglobin A1c (Type 2 Diabetes)



The unadjusted model

$$Y_i \sim \mathcal{N}(\sum_{j=1}^D \beta_j A_{ij}, \sigma^2)$$

The medical deconfounder

$$Y_i \sim \mathcal{N}(\sum_{j=1}^D \beta_j A_{ij} + \sum_{k=1}^K \gamma_k \hat{Z}_{ik}, \sigma^2)$$

- The deconfounder reduces both false positive and false negative rates: acetaminophen (c2nc); amolodipine and hydrochorothiazide (nc2c).
- It identifies effective (causal) drugs that are more consistent with the medical literature.

Data for Good

