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Counterfactual policy evaluation

* Counterfactual, what-if analyses guide policy-related questions
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Amazon.com Inc. founder and CEO Jeff Bezos said today it was "a mistake"
for the Seattle-based online retailer to experiment with charging different
customers different prices for the same products. But Bezos said the tests,
which were halted earlier this month, didn't utilize any customer
demographic information to determine the discounts offered to customers.
"We've never tested and we never will test prices based on customer
demographics," said Bezos. "What we did was a random price test, and even
that was a mistake because it created uncertainty for customers rather than
simplifying their lives." He said the company's new policy is that if it ever
again tests differential pricing, it will subsequently charge all buyers the
lowest price. Under that policy the company has already refunded to 6,896
customers an average of $3.10 as a result of the DVD random price test that
provoked the recent outcry.



Counterfactual policy evaluation

* Of course, causal inference is the key requirement for counterfactual
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Causal price effects require inference
(i.e., price elasticity — so called ,E’ )



Counterfactual policy evaluation

* However, causal inference is NOT the only requirement for counterfactual
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Empirical models for policy evaluation

* Scalable, flexible machine learning has solved prediction policy problems
* Who will need to be recommended for hip replacement surgery
* Who will need to be categorized as our target customers

* Flexible predictive methods are tuned for y, but do not give useful guidance for B
* Athey (2017), Mullainathan and Spiess (2017)
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* Who will need to be recommended for hip replacement surgery
* Who will need to be categorized as our target customers

* Flexible predictive methods are tuned for y, but do not give useful guidance for B
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* Causal inference is still required to fully resolve resource allocation problems
* Who will first need to receive hip replacement surgery, under medical resource limitation
* Who will need to be prioritized as our target customers, under limited couponing budget

* Parsimonious structural models recover policy-invariant § at the expenses of low predictive
accuracy of y

* Bajari et al. (2015), Athey and Imbens (2019)



Empirical models for policy evaluation

* Scalable, flexible machine learning has solved prediction policy problems
* Who will need to be recommended for hip replacement surgery
* Who will need to be categorized as our target customers

* Flexible predictive methods are tuned for y, but do not give useful guidance for B
* Athey (2017), Mullainathan and Spiess (2017)

* Causal inference is still required to fully resolve resource allocation problems

* Who will first need to receive hip replacement surgery, under medical resource limitation
* Who will need to be prioritized as our target customers, under limited couponing budget

e Parsimonious structural models recover policy-invariant B at the expenses of low predictive
accuracy of y
* Bajari et al. (2015), Athey and Imbens (2019)

* Focus on either prediction or inference



A hybrid approach

e Our proposal theoretically decomposes causal components and predictive
components into separable functions

y=[f({px)=[f(gp),h(x)
Causal effect of price Demand shifter by
on demand environment

e Each component can take flexible functional forms

* Price responsiveness and demand shifters are interpreted as function values, so they are
robust to specifications

* Flexible deep learning methods can be used for estimation and prediction of
causal and predictive functions



Linear expenditure share curve

e Two standard microeconomic assumptions — functional separability and quasi-
homotheticity — derives the linear cost function of good i given p;,, m
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b(p) is additional expenditure of remaining category budget and b; (p) = o,




Feed-forward neural nets

* b, a, and m, are trained as separate neural nets
Network for b
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* Linear combinations of input variables create output vectors
* One hidden layer with 10 nodes is used for empirical application



Feed-forward neural nets

* b, a, and m, are trained as separate neural nets, then combined into expenditures

Network for b
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Loss function

Output values are evaluated by the following loss function:

_ N2
Zi’t (log B — log Eu) Zi’t log pi¢ Zi,t (log a;+ — log &Z-t)Q Zi,t (logm; — log mt)Q

L = +0 + 0
nT “ nl’ nl m nT’
v ' v
Sum of Squared Residuals -2 regularization for identification L-2 regularization for
of the minimum demand quantity identification of the category budget
where
e nand T # of goods and # of time periods in data
« E,a,andm Expenditure, minimum quantity, and maximum expenditure
observed in data

« £, 4, andm Fitted expenditure, minimum quantity, and maximum expenditure

* 8,and 0, Tuning parameters for the regularization
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Two counterfactual simulation studies

e Extrapolation

* Does the proposed model predict a reasonable counterfactual demand curve outside of the
observed price ranges?

* No endogeneity

* Endogeneity
* |s the proposed identification strategy robust to strategic pricing unobserved to researchers?
* Demand fluctuations are perfectly correlated with price fluctuations
» Seasonal price shocks with and without actual demand shocks



Extrapolation

* Data generated by a translated CES function

* Six empirical strategies
* Proposed model & neural nets with price term as a predictor

Proposed model & neural nets with price polynomials as predictors
Proposed model & Bayesian estimation with price polynomials as predictors

Log demand model & “off-the-shelf” neural nets with price term as a predictor

Log demand model & “off-the-shelf” neural nets with price polynomials as predictors

Log demand model & Bayesian estimation with price polynomials as predictors



Extrapolation

 Predicted demand curves
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Extrapolation

* Predicted demand curves

expenditure
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Extrapolation

 Predicted demand curves
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Extrapolation

* Flexible models with “off-the-shelf” neural nets present superior in-sample MSE’s

Proposed models Log demand models
Price Seasons | True P only P-poly. P-poly. P only P-poly. P-poly.
ranges curve | neural nets neural nets Bayes. | neural nets neural nets Bayes.
A.Mid Off 1.432 1.306 1.305 1.308 1.302 1.297 1.359
Peak 0.916 0.873 0.871 0.872 0.875 0.867 0.889
B. Wide Off 1.511 1.407 1.408 1.412 1.402 1.368 1.492
Peak 0.994 0.962 0.946 0.960 0.964 0.925 0.992
C. Narrow Off 1.205 1.083 1.074 1.079 1.074 1.071 1.088
Peak 0.775 0.725 0.726 0.725 0.726 0.722 0.735

Note: Numbers in bold indicate the lowest MSE values among six competing methods.



Extrapolation

* Qut-of-sample MSE’s within observed price ranges are still better
* Researchers may choose flexible models over proposed models

Proposed models

Log demand models

Price Seasons | True P only P-poly. P-poly. P only P-poly. P-poly.
ranges curve | neural nets neural nets Bayes. | neural nets neural nets Bayes.
A.Mid Oft 1.738 1.101 2.162 1.887 1.100 1.108 1.104
Peak 0.934 0.903 2.409 1.437 0.897 0.909 0.947
B. Wide Off 2.246 1.210 2.948 3.225 1.216 1.216 1.268
Peak 1.011 0.974 3.446 2.019 0.969 0.983 0.997
C. Narrow  Off 1.635 0.977 1.215 1.092 0.976 0.977 0.974
Peak 0.764 0.715 1.094 0.803 0.713 0.721 0.728

Note: Numbers in bold indicate the lowest MSE values among six competing methods.
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Extrapolation

* However, proposed models fit better outside of observed price ranges
* Proposed models offer more accurate counterfactual predictions for optimal pricing

Proposed models Log demand models
Price Seasons | True P only P-poly. P-poly. P only P-poly. P-poly.
ranges curve | neural nets neural nets Bayes. | neural nets neural nets Bayes.
A.Mid Oft 3.873 4.133 3.964 5.204 10.906 93.326 Inf.
Peak 3.205 3.641 3.497 4.183 8.534 91.067 Inf.
B. Wide Oft 3.877 4.015 4.403 5.459 6.472 19.112 Inf.
Peak 3.328 3.565 3.917 4.420 4.236 17.515 Inf.
C. Narrow Off 3.523 3.423 4.653 3.462 10.755 475.564 Inf.
Peak 2.812 2.869 4.304 2.818 10.493 523.131 Inf.

Note: Numbers in bold indicate the lowest MSE values among six competing methods.
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Endogeneity

* Data generated under cyclical pricing
* Firm is aware of the season, but not aware of the amount of seasonal demand shock

* Firm raises prices during the peak season
e Firm raises prices in reaction to random positive shocks

e Two empirical strategies based on the out-of-sample fit (within range)

* Proposed model & neural nets with price term as a predictor
* Log demand model & “off-the-shelf” neural nets with price term as a predictor

e Two different situations
e There IS true demand shock during peak season
e There IS NOT true demand shock during peak season



Endogeneity

* Predictive demand curves robust to endogeneity bias
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Endogeneity

* Minimum quantity captures seasonality more robust to strategic pricing
* Mean fixed effects include confounds —i.e., aggregate demand shift due to strategic pricing
* Price responses are also more robust in the proposed framework w/o good instruments

w/o true demand shock w/ true demand shock
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Preliminary application

 Complete transaction data in the diaper category of a grocery store in the Bay area

* Nationwide chain
* Information available at the individual level
* Accurate price/sales information observed

* We analyze weekly aggregation of the sales quantity
e Estimation sample: May 2005 ~ Dec 2006
* Holdout sample: Jan 2007 ~ May 2007
e Small number of data points

» 84 observations in sample
e 22 observations out of sample

* This is a preliminary test
e Further analysis in progress



All diapers

* Proposed models predict more stable demand curves, despite small # of obs.
* Flexible predictive models potentially overfit the sample
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All diapers

* Proposed models improve out of sample MSE’s by about 9~44%
e This is without regime shifts observed

In-sample (before 2007)

Out-of-sample (after 2007)

P only NN (proposed) 105,928.20 55,404.57
P-poly NN (proposed) 105,845.70 55,497.91
P-poly Bayes (proposed) 107,594.90 62,428.08
P only NN (log demand) 94,440.84 98,498.49
P-poly NN (log demand) 102,349.40 60,975.31
P-poly Bayes (log demand) 101,641.00 89,882.08

25



Pampers

* Proposed models predict more stable demand curves, despite small # of obs.
* Flexible predictive models potentially overfit the sample
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Pampers

* Proposed models improve out of sample MSE’s by about 23~28%
* This is without regime shifts observed

In-sample (before 2007)

Out-of-sample (after 2007)

P only NN (proposed) 14,149.01 13,542.20
P-poly NN (proposed) 14,153.27 13,545.53
P-poly Bayes (proposed) 14,278.67 14,462.53
P only NN (log demand) 12,894.89 18,912.17
P-poly NN (log demand) 12,739.95 17,711.84
P-poly Bayes (log demand) 12,944.71 18,673.13
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Takeaways

* We suggest a theory-based identification strategy to decompose demand
fluctuations into environment-driven shifters and budget-driven price responses
e Our strategy vields a good predictive performance for counterfactual pricing
* |t also presents a superior out-of-sample prediction in real-world data

* The proposed model is robust to endogeneity concerns

* |t exploits further information in the data —i.e., minimum quantity
* |t is useful especially when there is no good instrument

* The theoretical regularization combined with neural nets offers accurate
prediction of demand shifters and reasonable approximation of causal price effects

» Scalable and flexible method, yet stable across policy regime spaces



Thank you

* Questions and comments: mingyu.joo@ucr.edu

* We can share a preliminary version of manuscript
e Empirical application not included yet

* Stay well!



Appendix



|dentification strategy (within-season)

A.

Minimum cost-of-living function

e Distinguished from “mean” fixed effects in most demand
models, the minimum demand quantity identifies the cost-
of-living function - a;(+) - as the baseline demand shifter.

Price sensitivity function
Expenditure for the excess quantity identifies the (pure)
price sensitivity - b;(+) - as the response to price
fluctuations.

Category budget

* The maximum expenditure over time identifies the category
budget - m; - as the upper-bound of the expenditure.
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Theoretical assumptions

Functional (or weak) separability (peaton and Muellbauer 1980)
* Preferences independent from other categories (e.g., soft drinks vs. clothing)
* Allowing for a separable sub-utility maximization subject to category budget allocation

U(Y) — u<vC1 (y17y27y3)l7' - UCk (:UN—l;:UN))




Theoretical assumptions

Functional (or weak) separability (peaton and Muellbauer 1980)
* Preferences independent from other categories (e.g., soft drinks vs. clothing)
* Allowing for a separable sub-utility maximization subject to category budget allocation

U’(Y) — u<vC1 (y17y27y3)la' - UCk (yN—layN)>

Quasi—homotheticity (Gorman 1976, Deaton and Muellbauer 1980)

* Budget increases lead to proportional increases in expenditures, beyond the fixed cost-of-
living.

Jmax v, (Y1, Y2,93) =P L (p,v) =a(p)+0b(p)v

s.t. p1y1 + pay2 +p3ys = B¢, / \‘

The minimum cost-of-living ~ Optimal allocation of remaining budget
(e.g., eggs to feed family) (e.g., additional eggs for baking)
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Empirical model

* Log expenditure of good i at time period t is given by

Bi P—
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n
) mey — sz"tai’ (p—O,t’rt)
i'=1

Outside option price is normalized to be one ( po:=1 )

Minimum cost-of-living for outside option is normalized to be zero ( @0:=0 )
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Budget-relevant cost for outside option is normalized to be one (b; (p—o.+) =b; (P—0.¢) /bo (P—0.t) )
Environmental variables control for seasonal fluctuations ( r+)



Empirical model

* Log expenditure of good i at time period t is given by

Ei (P—O,t)
1+ 22:1 Ppir+ by (p—O,t

log E;; = log {pitai (P—o0.¢|rs) + Dit

n
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i'=1

Outside option price is normalized to be one ( po:=1 )

}+€it

Budget-relevant cost for outside option is normalized to be one (b; (p—o.+) =b; (P—0.¢) /bo (P—0.t) )
Environmental variables control for seasonal fluctuations (z:)

Minimum cost-of-living for outside option is normalized to be zero ( @0:=0 )

* Functions to be estimated by neural nets are



