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Bayesian VARX

r-valued stochastic process

q .
Yt = ZA,T Yt—i + BTXt + €t Et 1251 Nr(O, Z)
i=1

{X¢} indep. {e;} and distribution not depending on {A;}, B, X

Rewrite
Ye=ATZ, + BT X, + &,

A=[A], ... AT e RI™*",  BecRPX
Ze =Y 1., YT €RY, Ziis fixed

small-n: Data fixed, n > p but possibly small compared to gr

large-n: Data stochastic, n > p, and n is increasing



Likelihood

Yt = ATZt+BTXt+€t Et i',lq Nr(O7Z)

S=nY (Y, —A"Z.—-B"X)"(Y: - ATZ, - B X,)

£V, X|A, B,S)  |£| " etr <—;’5:1>

Instead of A it is common to work with o = vec(.A) € R Thus
we need a prior for

(0, B,%) € RI” x RPX" x ST,



VARX Priors

Yt = ATZt + BTXt + €t Et ig\-’d N,«(O, Z)

Karlsson (2013, Handbook Economic Forecasting) gives a
comprehensive review of priors.

Let W =[AT,BT]T.

vec(V) ~ MVN and X ~ Inverse Wishart,
f(V,X) ||,

Minnesota prior, and so on.

Proposed prior: Recall o = vec(A) € R

fla)  F(B)x1 F(T) o |£] 72 2etr (—;Dz—l)



VARX Priors

a = vec(A) € R and

f(a) f(B) o 1 f(X) o |Z|7%/ 2etr (—iDzl>

Thm If either

1. D is positive definite, X has full column rank, n+ a > 2r + p,
and f(«) is proper; or

2. [Y,Z,X] has full column rank, n4+a > (2+ q)r + p, and f(«)
is bounded,

then the posterior (o, B, X|D,) exists and is proper.



VARX Posterior

1
F(B) x 1 F(5)  [£] 2/ 2etr (—202—1)
1 T
f(a) o exp —i(a —m) C(aw—m)
f(a) common in macroeconomics and finance

allows large VARs, i.e. gr large and m can be chosen to
address near non-stationarity (unit root sense)

f(B) common in multivariate location-scale settings

f(X) includes inverse Wishart and Jeffreys priors



Collapsed Gibbs sampler

(o, X) is a linchpin variable:
f(a,B,X|Dy) = f(Bla, X, Dp)f (e, £|Dy)

and
B | a,X, D, ~ Matrix Normal

Use Gibbs sampler for f(«, X|D,) since

Y | «, D, ~ Inverse Wishart

a | X, D, ~ Multivariate Normal

0= (B,%,a)—(B,Y,a)= (B, d)— (B, d)=0¢



Convergence Analysis

Geometric ergodicity of Collapsed Gibbs sampler: Find p < 1 s.t.

IK&(8,-) = F(IDa)ll7v < M(6)p"

Classical (small n):
Find conditions to ensure that geometric ergodicity holds for any
fixed data set.




Convergence Analysis

Geometric ergodicity of Collapsed Gibbs sampler: Find p < 1 s.t.

IK&(8,-) = F(IDa)ll7v < M(6)p"

Classical (small n):
Find conditions to ensure that geometric ergodicity holds for any
fixed data set.

Convergence complexity (large n): p = pj
Find conditions to ensure that the convergence rate behaves well for
large n:

limsupp, <1 almost surely
n—oo

so the geometric ergodicity is asymptotically stable.



Convergence Analysis

Collapsed Gibbs sampler:
0=(B,L,a)—= (B,Y,a) = (B,Y,d)— (B,2,a)=6¢

It suffices to study the marginal process {a'} because

IKE(8,-) = F(IPa)ll7v < K3 (@) = Fal[Dn)l 7v



Convergence Analysis
Rosenthal (JASA, 1995)

Suppose V : R — [0,00), A <1 and some L < o0

/v (o, da) < AV(a) + L forall o/, (1)

and for T > 2L/(1—\)
Ko(o,) > eR(:) foralla e {a: V(a) < T} (2)

Then K, is geometrically ergodic and there is an explicit formula for
ﬁ = f_)n(y?Xv C7 Da m, a)

such that
p=p



Convergence Analysis

Take home message:

Rosenthal’s theorem vyields an explicit upper bound on the rate
/3 = ﬁ(Dm C7 Da m, a)v
but if V is not chosen carefully, then it is likely the case that

liminfp — 1 almost surely
n—o0o

and we won't be able to conclude that the geometric ergodicity is
asymptotically stable.
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Classical (small n) Convergence Analysis

Recall

f(a) o exp (—;(a —m)"C(a - m))

Thm If C is positive definite, then the collapsed Gibbs sampler is
geometrically ergodic.

But

'mg@f%’n =1 almost surely
Used drift function
V(a) = [lalf?

which implies that the Markov chain should visit sets near the origin
frequently.

No reason to think this is reasonable when n is large.
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Convergence Complexity (large n) Analysis

Intuition:
For large n, the posterior should concentrate around the true ™.

For large n, the least squares estimator or MLE
A=(ZTQx2)"ZTQxY

should converge to the true o*.

Maybe we should center the drift function around the least squares

estimator or MLE.

V(a) = [|QxZA — QxZA|?
=[|(l ® Qx2)(a — &)



Convergence Complexity (large n) Analysis
Thm If
(a) C is positive definite,

(b) [Y, X, Z] has full column rank for all large enough n almost
surely,

(c) ||&]|?> = O(1) almost surely as n — oo, and

(d) there exists 0 < M < oo such that, almost surely,
M1 < liminf 0~ Amin(Y T Qz 1Y)
<limsup 1 Amax (YT Qzx1Y)

n—oo

<M

then, almost surely,
limsupp, <1

n—-00



