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Bayesian VARX

r -valued stochastic process

Yt =
q∑

i=1
AT

i Yt−i + BT Xt + εt εt
ind∼ Nr (0,Σ)

{Xt} indep. {εt} and distribution not depending on {Ai},B,Σ

Rewrite
Yt = AT Zt + BT Xt + εt

A = [AT
1 , . . . ,AT

q ] ∈ Rqr×r , B ∈ Rp×r

Zt = [Y T
t−1, . . . ,Y T

t−q]T ∈ Rqr , Z1 is fixed

small-n: Data fixed, n > p but possibly small compared to qr

large-n: Data stochastic, n > p, and n is increasing
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Likelihood

Yt = AT Zt + BT Xt + εt εt
ind∼ Nr (0,Σ)

S = n−1(Yt −AT Zt − BT Xt)T (Yt −AT Zt − BT Xt)

f (Y ,X |A,B,Σ) ∝ |Σ|−n/2etr
(
−n
2SΣ−1

)

Instead of A it is common to work with α = vec(A) ∈ Rqr2 . Thus
we need a prior for

(α,B,Σ) ∈ Rqr2 × Rp×r × Sr
++



VARX Priors

Yt = AT Zt + BT Xt + εt εt
ind∼ Nr (0,Σ)

Karlsson (2013, Handbook Economic Forecasting) gives a
comprehensive review of priors.

Let Ψ = [AT ,BT ]T .

vec(Ψ) ∼ MVN and Σ ∼ Inverse Wishart,

f (Ψ,Σ) ∝ |Σ|−a,

Minnesota prior, and so on.

Proposed prior: Recall α = vec(A) ∈ Rqr2

f (α) f (B) ∝ 1 f (Σ) ∝ |Σ|−a/2etr
(
−1
2DΣ−1

)



VARX Priors

α = vec(A) ∈ Rqr2 and

f (α) f (B) ∝ 1 f (Σ) ∝ |Σ|−a/2etr
(
−1
2DΣ−1

)

Thm If either

1. D is positive definite, X has full column rank, n + a > 2r + p,
and f (α) is proper; or

2. [Y ,Z ,X ] has full column rank, n + a > (2 + q)r + p, and f (α)
is bounded,

then the posterior f (α,B,Σ|Dn) exists and is proper.



VARX Posterior

f (B) ∝ 1 f (Σ) ∝ |Σ|−a/2etr
(
−1
2DΣ−1

)
f (α) ∝ exp

(
−1
2(α−m)T C(α−m)

)
f (α) common in macroeconomics and finance

allows large VARs, i.e. qr large and m can be chosen to
address near non-stationarity (unit root sense)

f (B) common in multivariate location-scale settings

f (Σ) includes inverse Wishart and Jeffreys priors



Collapsed Gibbs sampler
(α,Σ) is a linchpin variable:

f (α,B,Σ|Dn) = f (B|α,Σ,Dn)f (α,Σ|Dn)

and
B | α,Σ,Dn ∼ Matrix Normal

Use Gibbs sampler for f (α,Σ|Dn) since

Σ | α,Dn ∼ Inverse Wishart
α | Σ,Dn ∼ Multivariate Normal

θ = (B,Σ, α)→ (B,Σ′, α)→ (B,Σ′, α′)→ (B′,Σ′, α′) = θ′



Convergence Analysis

Geometric ergodicity of Collapsed Gibbs sampler: Find ρ < 1 s.t.

‖Kh
C (θ, ·)− F (·|Dn)‖TV ≤ M(θ)ρh

Classical (small n):
Find conditions to ensure that geometric ergodicity holds for any
fixed data set.

Convergence complexity (large n): ρ = ρn
Find conditions to ensure that the convergence rate behaves well for
large n:

lim sup
n→∞

ρn < 1 almost surely

so the geometric ergodicity is asymptotically stable.



Convergence Analysis

Geometric ergodicity of Collapsed Gibbs sampler: Find ρ < 1 s.t.

‖Kh
C (θ, ·)− F (·|Dn)‖TV ≤ M(θ)ρh

Classical (small n):
Find conditions to ensure that geometric ergodicity holds for any
fixed data set.

Convergence complexity (large n): ρ = ρn
Find conditions to ensure that the convergence rate behaves well for
large n:

lim sup
n→∞

ρn < 1 almost surely

so the geometric ergodicity is asymptotically stable.



Convergence Analysis

Collapsed Gibbs sampler:

θ = (B,Σ, α)→ (B,Σ′, α)→ (B,Σ′, α′)→ (B′,Σ′, α′) = θ′

It suffices to study the marginal process {αh} because

‖Kh
C (θ, ·)− F (·|Dn)‖TV ≤ ‖Kh−1

α (α, ·)− Fα(·|Dn)‖TV



Convergence Analysis
Rosenthal (JASA, 1995)

Suppose V : Rqr2 → [0,∞), λ < 1 and some L <∞∫
V (α)Kα(α′, dα) ≤ λV (α′) + L for all α′. (1)

and for T > 2L/(1− λ)

Kα(α, ·) ≥ εR(·) for all α ∈ {α : V (α) ≤ T}. (2)

Then Kα is geometrically ergodic and there is an explicit formula for

ρ̄ = ρ̄n(Y ,X ,C ,D,m, a)

such that
ρ ≤ ρ̄



Convergence Analysis

Take home message:

Rosenthal’s theorem yields an explicit upper bound on the rate

ρ̄ = ρ̄(Dn,C ,D,m, a),

but if V is not chosen carefully, then it is likely the case that

lim inf
n→∞

ρ̄→ 1 almost surely

and we won’t be able to conclude that the geometric ergodicity is
asymptotically stable.



Classical (small n) Convergence Analysis

Recall
f (α) ∝ exp

(
−1
2(α−m)T C(α−m)

)
Thm If C is positive definite, then the collapsed Gibbs sampler is
geometrically ergodic.

But

lim inf
n→∞

ρ̄n = 1 almost surely

Used drift function

V (α) = ‖α‖2

which implies that the Markov chain should visit sets near the origin
frequently.
No reason to think this is reasonable when n is large.
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Convergence Complexity (large n) Analysis
Intuition:
For large n, the posterior should concentrate around the true α∗.

For large n, the least squares estimator or MLE

Â = (ZT QX Z )+ZT QX Y

should converge to the true α∗.

Maybe we should center the drift function around the least squares
estimator or MLE.

V (α) = ‖QX ZA− QX ZÂ‖2F
= ‖(Ir ⊗ QX Z )(α− α̂)‖2
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Convergence Complexity (large n) Analysis
Thm If

(a) C is positive definite,

(b) [Y ,X ,Z ] has full column rank for all large enough n almost
surely,

(c) ‖α̂‖2 = O(1) almost surely as n→∞, and

(d) there exists 0 ≤ M <∞ such that, almost surely,

M−1 ≤ lim inf
n→∞

n−1λmin(Y T Q[Z ,X ]Y )

≤ lim sup
n→∞

n−1λmax (Y T Q[Z ,X ]Y )

≤ M

then, almost surely,
lim sup

n→∞
ρ̄n < 1


