Scenarios ofVisual

 Inference - quantifying visual findings Heike HofmannDepartment of Statistics Iowa State University

joint work with Susan VanderPlas and Dianne Cook

Outline

- Some examples
- A bit about the Lineup Protocol
- Inference in the lineup protocol

Why Visual Inference?

- Graphics are essential tools for data exploration, but ...

- ... post-hoc inferential results are invalid (data fishing, trawling, snooping ...)
- Need: quantitative assessment of significance of graphical finding based directly on graphic

Why Visual Inference?

- Graphics are essential tools for data exploration, but ...

- ... post-hoc inferential results are invalid (data fishing, trawling, snooping ...)
- Need: quantitative assessment of significance of graphical finding based directly on graphic

Which of these panels looks the most different?

Which of these panels looks the most different?

data is in panel \#I3

Which of these panels looks the most different?

data is in panel \#I3

20/23 participants identified \#|3 as the most different

Heike Hofmann, lowa State University

Is this normal?

Is this normal?

Normal Q-Q plot

Is this normal?

Normal Q-Q plot

Obvious deviations from normality assumption

Is this normal?

Normal Q-Q plot

Obvious deviations from normality assumption but ...

Which of these panels looks the most different?

Which of these panels looks the most different?

data is in panel \#IO

Which of these panels looks the most different?

data is in panel \#IO
0/68 participants identified \#IO as the most different

Which of these panels looks the most different?

Which of these panels looks the most different?

data is in panel \#I3

Which of these panels looks the most different?

data is in panel \#I3

12/72 participants identified \#|3 as the most different

Heike Hofmann, lowa State $U_{\text {Niversity }}$

Which of these panels looks the most different?

What is the p-value of this finding?
data is in panel \#l3

12/72 participants identified \#|3 as the most different

Heike Hofmann, lowa State University

Back up:

- Lineup protocol in general
- Construction of Lineup in this example

Graphical vs Classical

	Mathematical Inference	Visual Inference
Hypothesis	$\begin{gathered} H_{0}: \beta=0 \text { vs } H_{1}: \beta \neq 0 \\ \downarrow \end{gathered}$	$\begin{gathered} H_{0}: \beta=0 \text { vs } H_{1}: \beta \neq 0 \\ \\ \downarrow \end{gathered}$
Test statistic	$T(y)=\frac{\hat{\beta}}{\sec (\hat{\beta})}$	$T(y)=\ldots$
	\downarrow	\downarrow
Null Distribution	$f_{T(y)}(t)$;	
Reject H_{0} if	observed T is extreme	$\stackrel{\downarrow}{\text { observed }} T$ is identifiable

Test

Compare test statistic to values generated consistently with the null distribution
Classical

reject null, if test statistic is here

Test

Compare test statistic to values generated consistently with the null distribution
Classical

reject null, if test
statistic is here

Test

Compare test statistic to values generated consistently with the null distribution
Classical

reject null, if test statistic is here
reject null, if data plot is 'identifiable'

Visual p-values

- Assume K independent observers evaluate a lineup
- Let X denote the number of data identifications
- quantify visual p-value: $\operatorname{Pr}\left(X \geq x \mid H_{0}\right.$ true $)$

Which of these panels looks the most different?

What is the p-value of this finding?
data is in panel \#l3

12/72 participants identified \#|3 as the most different

Heike Hofmann, lowa State University

The Electoral

 Building- result from the 2012 US election
- each state a rectangle: width: margin of majority party over minority
height: \#electoral votes
the test statistic

Null plots

- Null hypothesis: election outcome is consistent with polling results
- Each null plot consists of sample from a pollster's predictions

Lineup

- Data is randomly placed among the null plots
- If the data is indistinguishable from the null, the election results are consistent with the poll

Lineup

- Data is randomly placed among the null plots
- If the data is indistinguishable from the null, the election results are consistent with the poll

Lineup

- Data is randomly placed among the null plots
- If the data is indistinguishable from the null, the election results are consistent with the poll

visual p-value: $P(\#$ data plot picks $\geq I 2$)

Data from lineup evaluation

- For lineup of size m we observe
$X=\left(X_{1}, \ldots, X_{m}\right) \sim$ Mult $_{\mathrm{pl}, \mathrm{p} 2}, \ldots, \mathrm{pm}$
- with $0 \leq \mathrm{p}_{\mathrm{i}} \leq \mathrm{I}$ and $\sum_{\mathrm{i}} \mathrm{pi}_{\mathrm{i}}=\mathrm{I}$
- w.lo.g. data plot in panel m , ie $X_{m} \sim \operatorname{Binom}\left(K, P_{m}\right)$
K independent evaluations
- What is distribution of X_{m} under null?

Data from lineup evaluation

- For lineup of size m we observe $X=\left(X_{1}, \ldots, X_{m}\right) \sim$ Mult $_{\mathrm{pl}, \mathrm{p} 2}, \ldots, \mathrm{pm}$
- with $0 \leq \mathrm{p}_{\mathrm{i}} \leq \mathrm{I}$ and $\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}=1$
- w.lo.g. data plot in panel m, ie $X_{m} \sim \operatorname{Binom}\left(K, P_{m}\right)$
K independent evaluations
- What is distribution of X_{m} under null?
if all plots were indistinguishable, we could assume $\mathrm{Pm}_{\mathrm{m}}=\mathrm{I} / \mathrm{m}$

Data from lineup evaluation

- For lineup of size m we observe $X=\left(X_{1}, \ldots, X_{m}\right) \sim$ Mult $_{\mathrm{pl}, \mathrm{p} 2}, \ldots, \mathrm{pm}$
- with $0 \leq \mathrm{p}_{\mathrm{i}} \leq \mathrm{I}$ and $\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}=1$
- w.lo.g. data plot in panel m, ie $X_{m} \sim \operatorname{Binom}\left(K, P_{m}\right)$
K independent evaluations
- What is distribution of X_{m} under null?
if all plots were indistinguishable, we could assume $\mathrm{Pm}_{\mathrm{m}}=\mathrm{I} / \mathrm{m}$

Evaluating lineup evaluations

- Assuming $X \sim \operatorname{Binom}(72, \mathrm{I} / 20)$
- p-value for 12 data picks is $P(X \geq 12)=0.00023$

Evaluating lineup evaluations

- Assuming $X \sim \operatorname{Binom}(72, \mathrm{I} / 20)$
- p-value for 12 data picks is $P(X \geq 12)=0.00023$

fails the sniff test!

Evaluating lineup evaluations

- Assuming $X \sim \operatorname{Binom}(72, \mathrm{I} / 20)$
- p-value for 12 data picks is $P(X \geq 12)=0.00023$

fails the sniff test!

Problem: if all plots were
 indistinguishable, we could assume $\mathrm{Pm}_{\mathrm{m}}=\mathrm{I} / \mathrm{m}\left(\right.$ and $\left.\mathrm{all} \mathrm{pi}_{\mathrm{i}}=\mathrm{I} / \mathrm{m}\right)$

Evaluating lineup evaluations

- Assuming $X \sim \operatorname{Binom}(72, \mathrm{I} / 20)$
- p-value for 12 data picks is $P(X \geq 12)=0.00023$

fails the sniff test!

Problem: if all plots were
 indistinguishable, we could assume $\mathrm{pm}_{\mathrm{m}}=1 / \mathrm{m}\left(\right.$ and all $\left.\mathrm{pi}_{\mathrm{i}}=1 / \mathrm{m}\right)$

Generally: Pm depends on PI, \ldots, Pm-ı, varies with lineup

Null Distribution of p

- Two other plots were selected at least as often as the data plot
- Distribution of null plot picks far from uniform

Null Distribution of p

- P_{i} is probability to pick panel i
- Assume that under the null, all panels have the same distribution:
$p=(\mathrm{P}, \ldots, \mathrm{Pm}) \sim \operatorname{Dirichlet}(\alpha), \alpha>0$ a flat Dirichlet distribution
- Estimate rate α from observed ($\mathrm{P}_{\mathrm{I}}, \ldots, \mathrm{Pm}_{\mathrm{I}}$)' where ($\mathrm{p}, \ldots, \mathrm{P}_{\mathrm{m}-\mathrm{l}}$)' is rescaled without data plot

Distribution of (PI, ..., Pm-ı)'

- flat Dirichlet (α) for ($\mathrm{P}_{1}, \ldots, \mathrm{Pm}_{\mathrm{I}}$) ' seems reasonable
- no obvious preference for location

Distribution of (Pı, ..., Pm-ı)'

- flat Dirichlet (α) for ($\mathrm{P}, \ldots, \mathrm{Pm}_{\mathrm{I}}$) ' seems reasonable
- no obvious preference for location

Dirichlet distributions estimated for each of nine different
experiments

Distribution of (PI, ..., Pm-ı)'

- flat Dirichlet (α) for ($\mathrm{P}, \ldots, \mathrm{Pm}_{\mathrm{I}}$) ' seems reasonable
- no obvious preference for location

Distribution of (Pı, ..., Pm-ı)'

- flat Dirichlet (α) for ($\mathrm{P}, \ldots, \mathrm{Pm}_{\mathrm{I}}$)' seems reasonable
- no obvious preference for location

visual p-value

- p-value based on $\operatorname{Binom}(72, \mathrm{I} / 20)$ $P(X \geq 12)=0.00023$

12/72 participants identified \#I3 as the most different

- p-value based on Dirichlet approach: $P(X \geq 12)=0.11396$

visual p-value

- p-value based on $\operatorname{Binom}(23, \mathrm{I} / 20)$ $P(X \geq 20) \leq 0.0000$ I

20/23 participants identified \#I3 as the most different

- p-value based on Dirichlet approach: $P(X \geq 20)=0.001842$

Dirichlet distributions for null

- seems to work in practice - theoretical densities and observed frequencies of picking null plots match
- α gives a rough estimate of the spread of null distribution/difficulty of a lineup (without regarding : small $\alpha=$ small number of null plots attract picks)
- Weirdly, strong signal in data plot makes estimating α harder: Rorschach for α

Conclusions

- Use lineup scenario to get valid p-values for visual findings
- useful in situations where conventional methods break down
- lineups allow us to ask for 'why' ... insight to visual reasoning of participants

