Scenarios of Visual Inference - quantifying visual findings -Heike Hofmann

Department of Statistics IOWA STATE UNIVERSITY

joint work with Susan VanderPlas and Dianne Cook

Outline

- Some examples
- A bit about the Lineup Protocol
- Inference in the lineup protocol

Why Visual Inference?

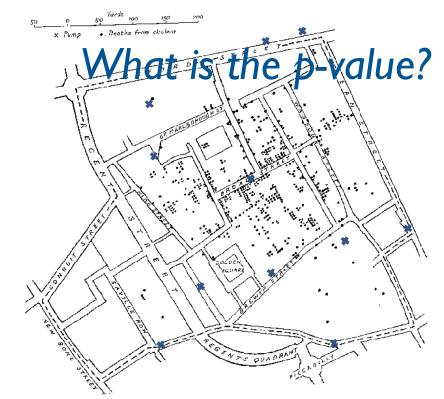
• Graphics are essential tools for data exploration, but ...

John Snow 1854

- ... post-hoc inferential results are invalid (data fishing, trawling, snooping ...)
- Need: quantitative assessment of significance of graphical finding based directly on graphic

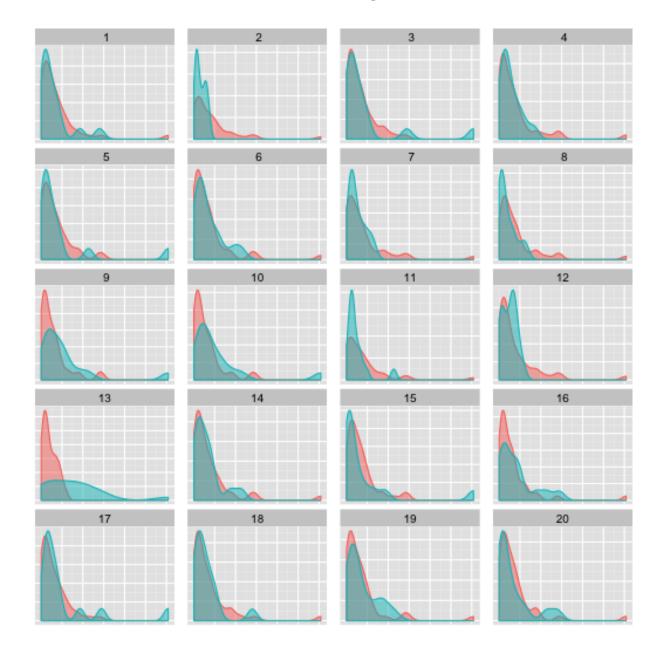
Why Visual Inference?

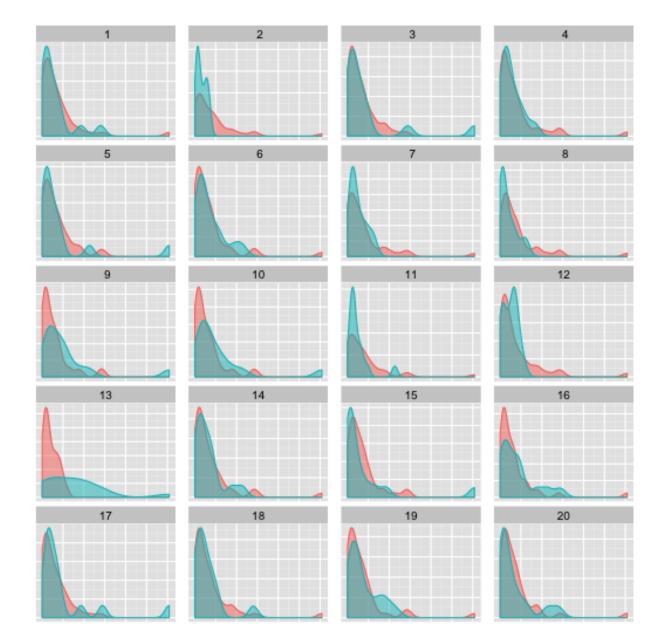
• Graphics are essential tools for data exploration, but ...



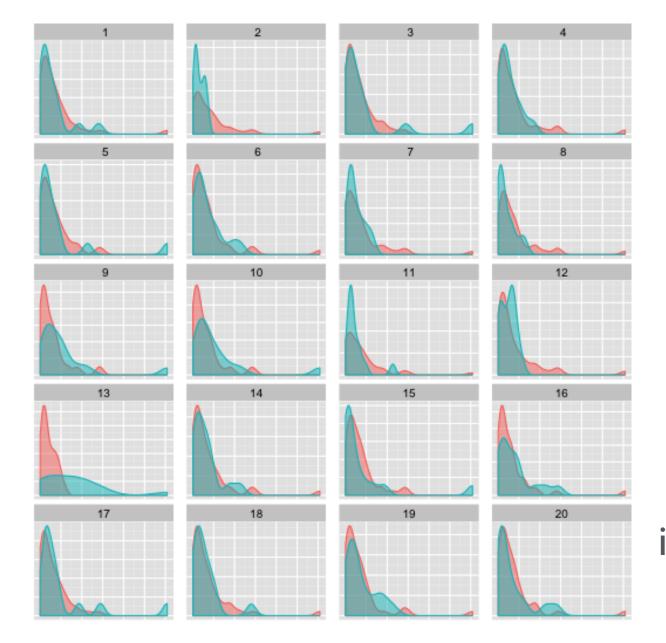
John Snow 1854

- ... post-hoc inferential results are invalid (data fishing, trawling, snooping ...)
- Need: quantitative assessment of significance of graphical finding based directly on graphic



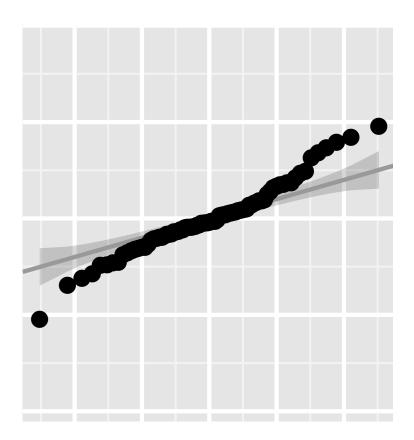


data is in panel #13

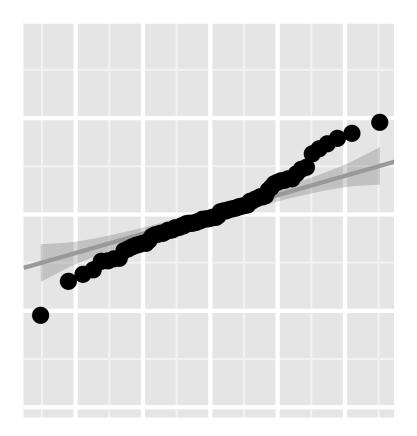


data is in panel #13

20/23 participants identified #13 as the most different

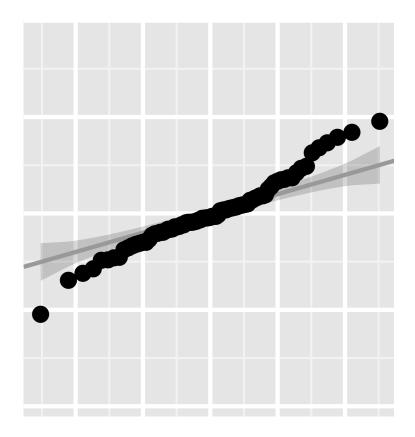


Normal Q-Q plot



Normal Q-Q plot

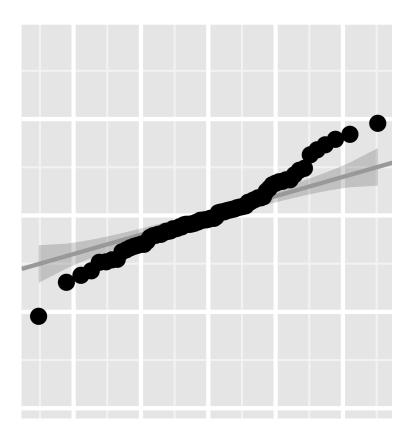
Obvious deviations from normality assumption

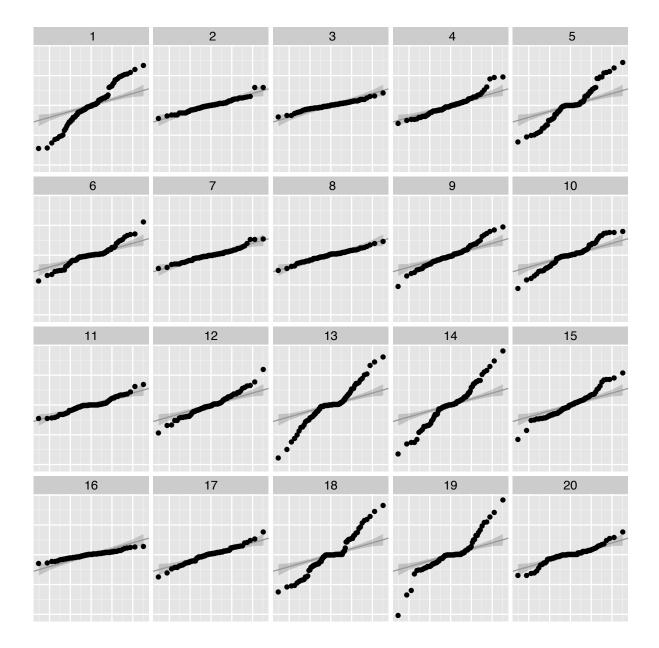


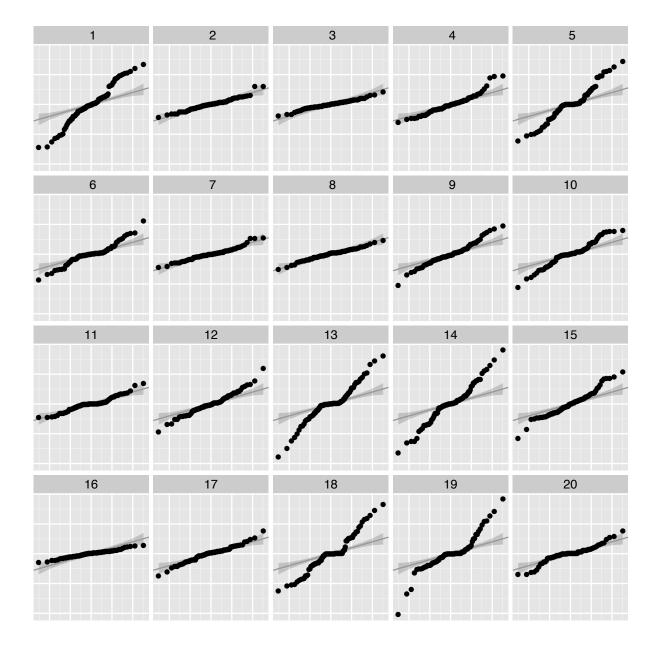
Normal Q-Q plot

Obvious deviations from normality assumption

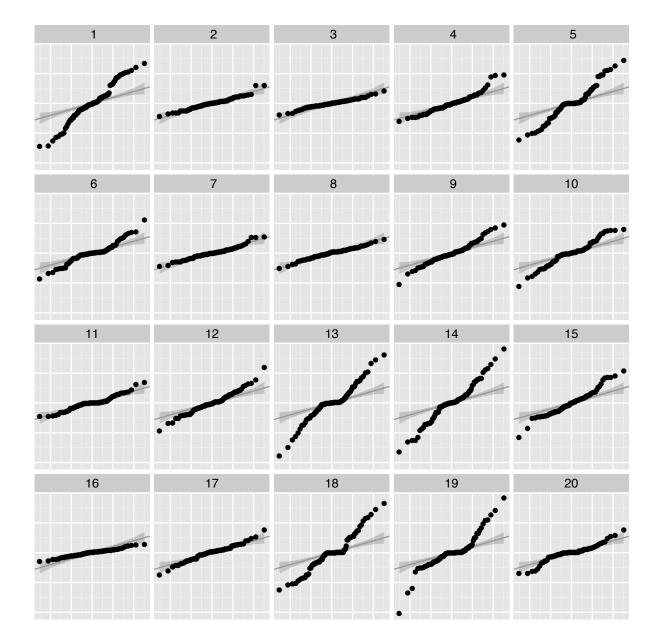
but ...





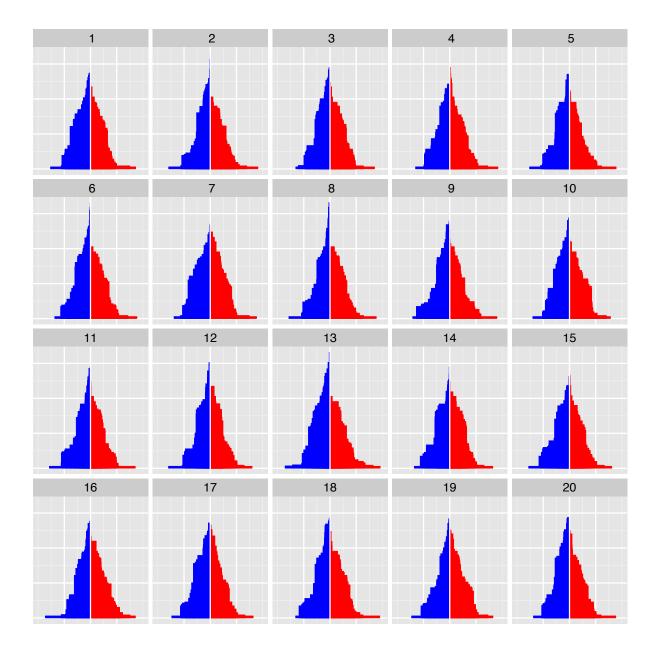


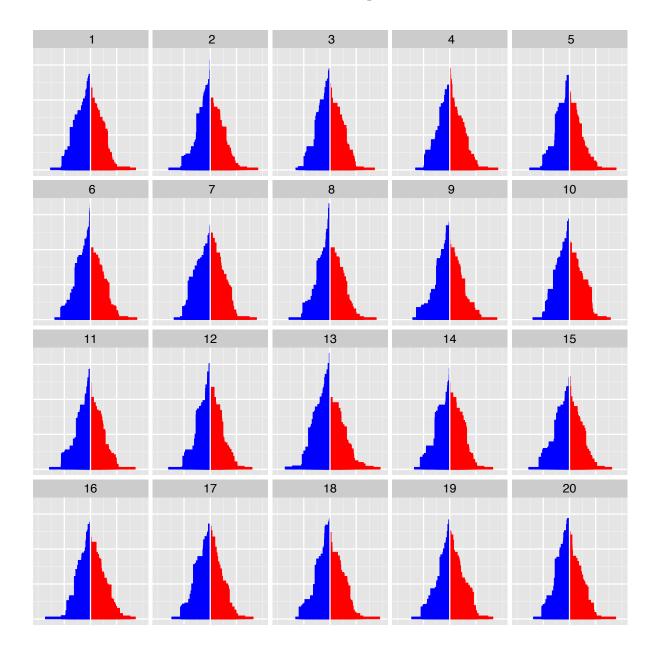
data is in panel #10



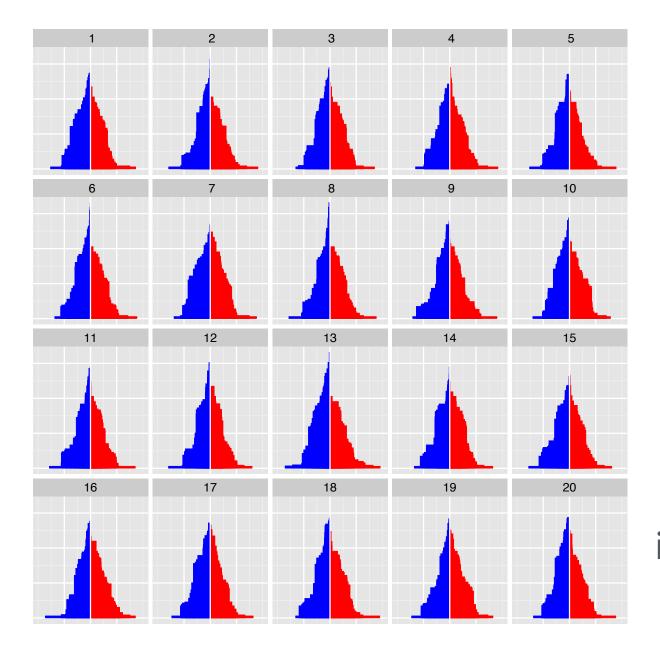
data is in panel #10

0/68 participants identified #10 as the most different



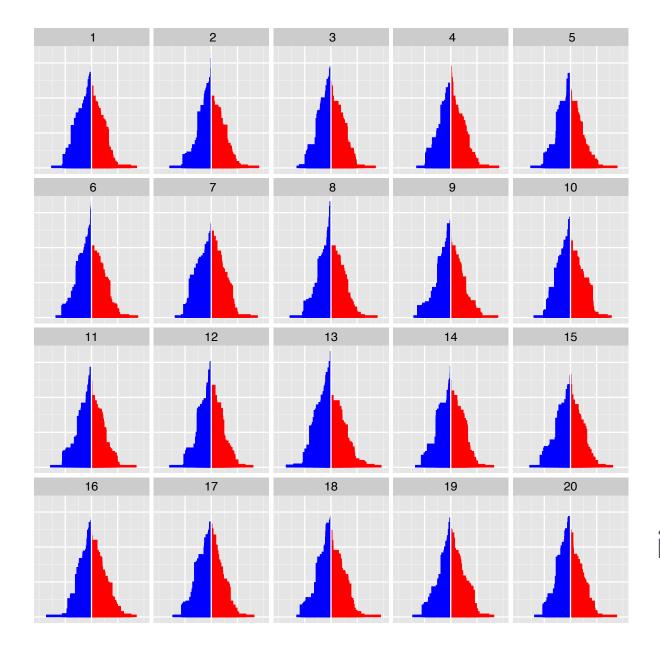


data is in panel #13



data is in panel #13

12/72 participants
identified #13 as the
most different

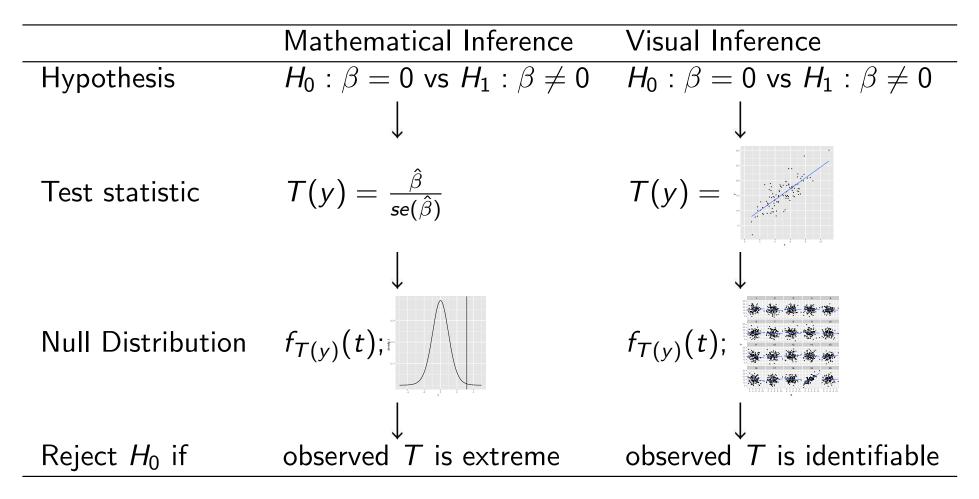


What is the p-value of this finding?

data is in panel #13

12/72 participants
identified #13 as the
most different

- Lineup protocol in general
- Construction of Lineup in this example



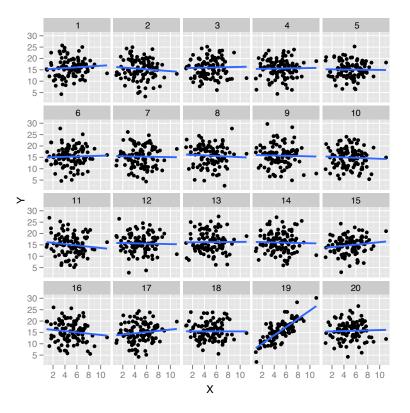
Test

Compare test statistic to values generated consistently with the null distribution Visual

reject null, if test

Classical

statistic is here



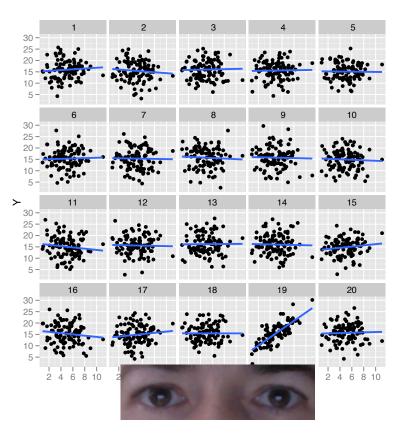
Test

Compare test statistic to values generated consistently with the null distribution Visual

reject null, if test

Classical

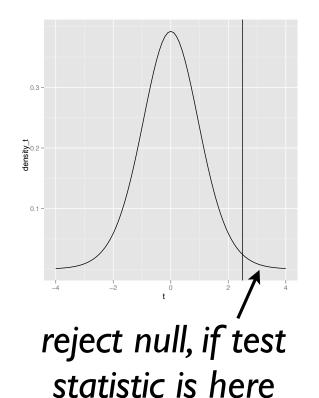
statistic is here



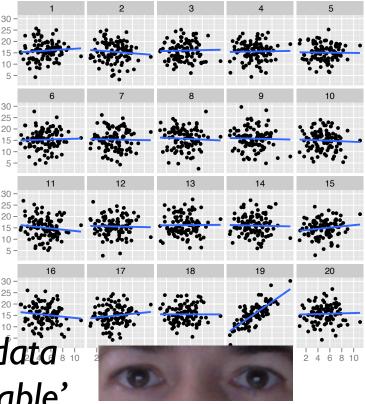
Test

Compare test statistic to values generated consistently with the null distribution Visual

Classical

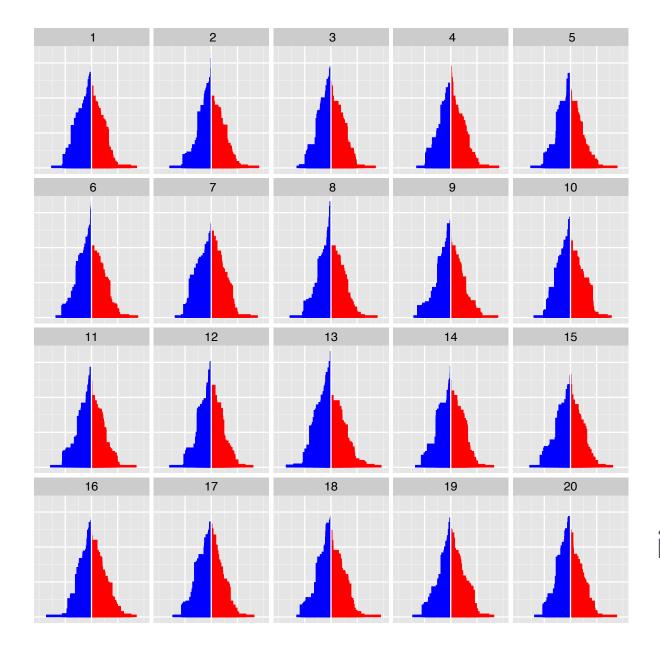


reject null, if data



Visual p-values

- Assume K independent observers evaluate a lineup
- Let X denote the number of data identifications
- quantify visual p-value: $Pr(X \ge x | H_0 \text{ true})$



What is the p-value of this finding?

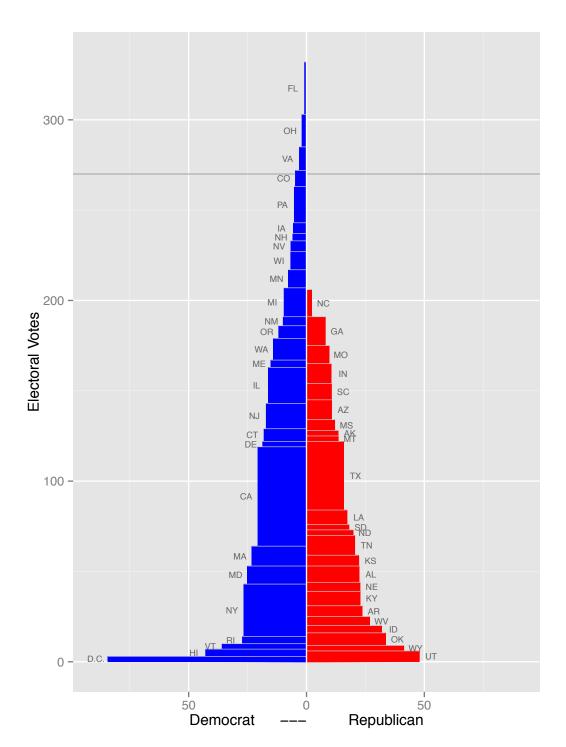
data is in panel #13

12/72 participants
identified #13 as the
most different

The Electoral Building

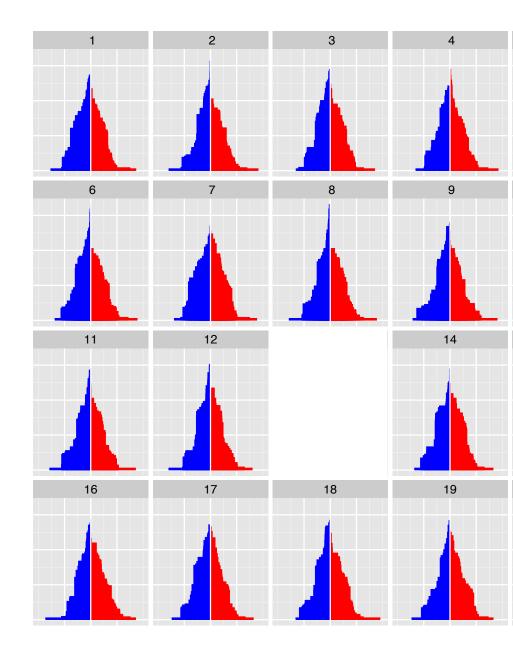
- result from the 2012
 US election
- each state a rectangle: width: margin of majority party over minority height: #electoral votes

the test statistic



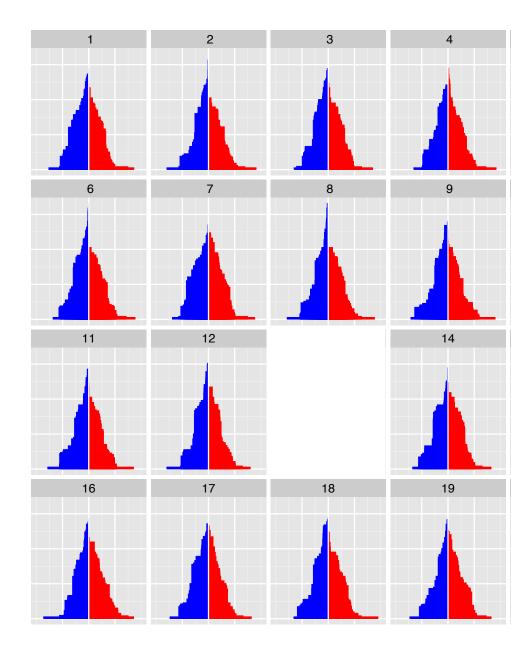
Null plots

- Null hypothesis: election outcome is consistent with polling results
- Each null plot consists of sample from a pollster's predictions



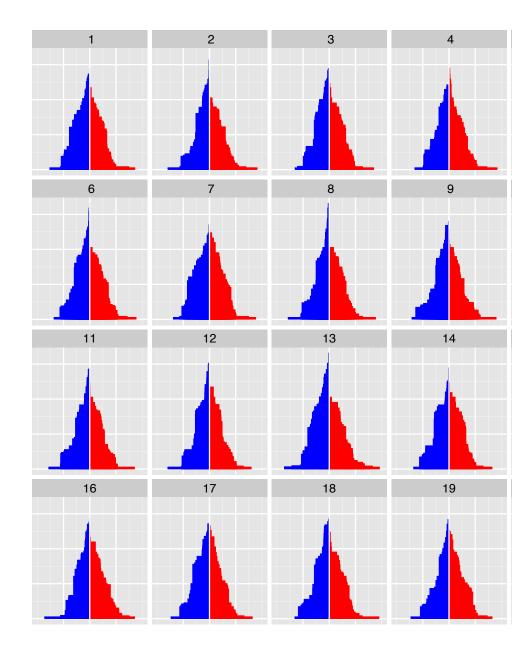
Lineup

- Data is randomly placed among the null plots
- If the data is indistinguishable from the null, the election results are consistent with the poll



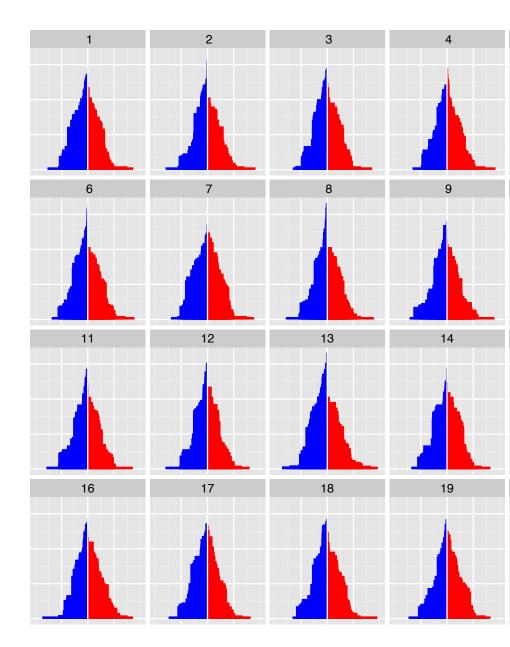
Lineup

- Data is randomly placed among the null plots
- If the data is indistinguishable from the null, the election results are consistent with the poll



Lineup

- Data is randomly placed among the null plots
- If the data is indistinguishable from the null, the election results are consistent with the poll



visual p-value: $P(\# data \ plot \ picks \ge 12)$

Data from lineup evaluation

- For lineup of size m we observe
 X = (X₁, ..., X_m) ~ Mult_{p1, p2, ..., pm}
- with $0 \le p_i \le I$ and $\sum_i p_i = I$
- w.lo.g. data plot in panel m, ie X_m ~ Binom(K, p_m) K independent evaluations
- What is distribution of X_m under null?

Data from lineup evaluation

- For lineup of size m we observe
 X = (X₁, ..., X_m) ~ Mult_{p1, p2, ..., pm}
- with $0 \le p_i \le I$ and $\sum_i p_i = I$
- w.lo.g. data plot in panel m, ie X_m ~ Binom(K, p_m) K independent evaluations
- What is distribution of X_m under null?

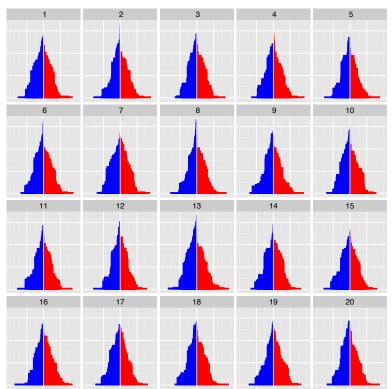
if all plots were indistinguishable, we could assume $p_m = 1/m$

Data from lineup evaluation

- For lineup of size m we observe
 X = (X₁, ..., X_m) ~ Mult_{p1, p2, ..., pm}
- with $0 \le p_i \le I$ and $\sum_i p_i = I$
- w.lo.g. data plot in panel m, ie X_m ~ Binom(K, p_m) K independent evaluations
- What is distribution of X_m under null?

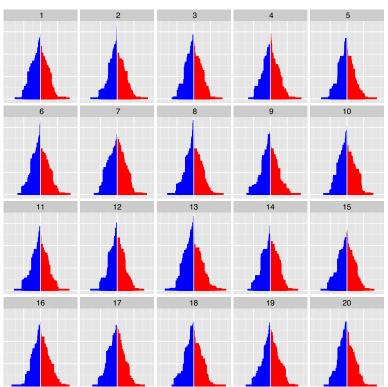
if all plots were indistinguishable, we could assume $p_m = 1/m$

- Assuming X ~ Binom(72, 1/20)
- p-value for 12 data picks is $P(X \ge 12) = 0.00023$



- Assuming X ~ Binom(72, I/20)
- p-value for 12 data picks is $P(X \ge 12) = 0.00023$

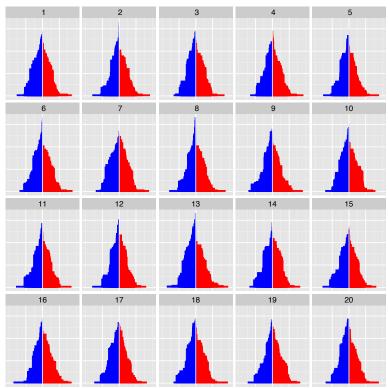
fails the sniff test!



- Assuming X ~ Binom(72, 1/20)
- p-value for 12 data picks is $P(X \ge 12) = 0.00023$

fails the sniff test!

Problem: if all plots were indistinguishable, we could assume $p_m = 1/m$ (and all $p_i = 1/m$)

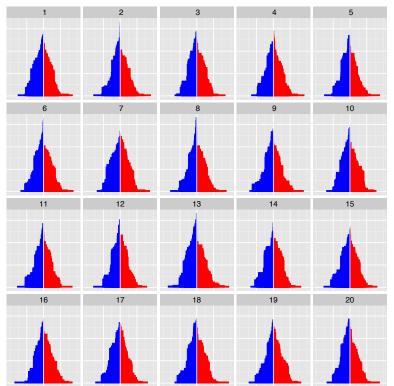


- Assuming X ~ Binom(72, 1/20)
- p-value for 12 data picks is $P(X \ge 12) = 0.00023$

fails the sniff test!

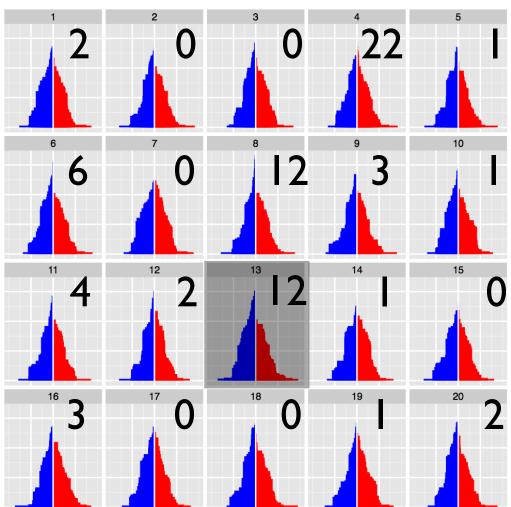
Problem: if all plots were indistinguishable, we could assume $p_m = 1/m$ (and all $p_i = 1/m$)

Generally: p_m depends on $p_1, ..., p_{m-1}$, varies with lineup



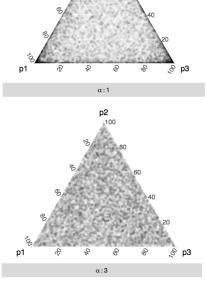
Null Distribution of p

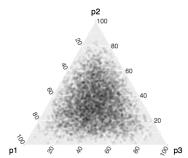
- Two other plots were selected at least as often as the data plot
- Distribution of null plot picks far from uniform



Null Distribution of p

- p_i is probability to pick panel i
- Assume that under the null, all panels have the same distribution:
 p = (p₁, ..., p_m) ~ Dirichlet(α), α > 0 a flat Dirichlet distribution





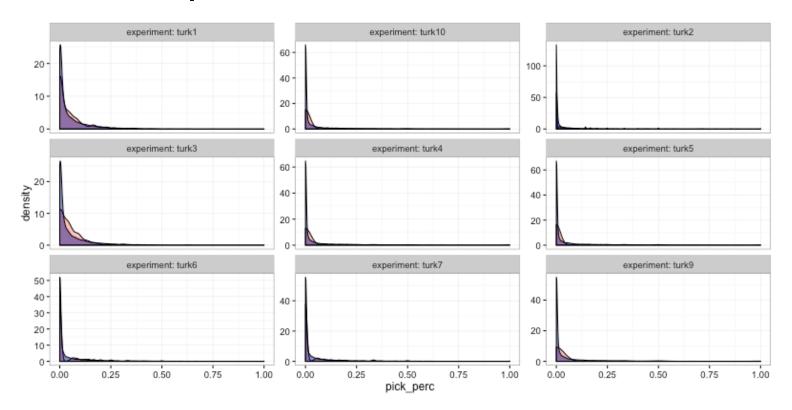
 Estimate rate α from observed (p₁, ..., p_{m-1})' where (p₁, ..., p_{m-1})' is rescaled without data plot

- flat Dirichlet(α) for ($p_1, ..., p_{m-1}$)' seems reasonable
- no obvious preference for location

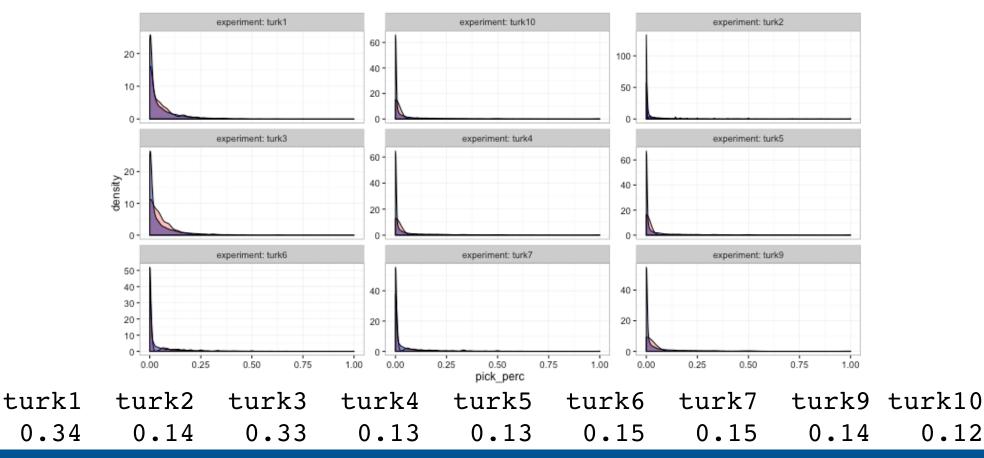
- flat Dirichlet(α) for ($p_1, ..., p_{m-1}$)' seems reasonable
- no obvious preference for location

Dirichlet distributions estimated for each of nine different experiments

- flat Dirichlet(α) for ($p_1, ..., p_{m-1}$)' seems reasonable
- no obvious preference for location



- flat Dirichlet(α) for ($p_1, ..., p_{m-1}$)' seems reasonable
- no obvious preference for location



visual p-value

p-value based on Binom(72, 1/20)
 P(X ≥ 12) = 0.00023

 1
 2
 3
 4
 5

 6
 7
 8
 9
 10

 6
 7
 8
 9
 10

 11
 12
 13
 14
 15

 11
 12
 13
 14
 15

 16
 17
 18
 19
 20

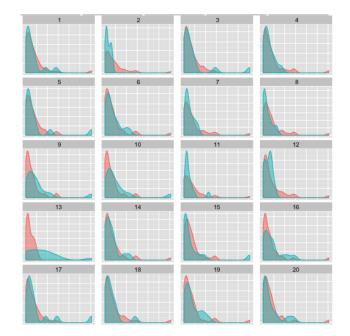
12/72 participants
identified #13 as the
 most different

• p-value based on Dirichlet approach: $P(X \ge 12) = 0.11396$

visual p-value

p-value based on Binom(23, 1/20)
 P(X ≥ 20) ≤ 0.00001

• p-value based on Dirichlet approach: $P(X \ge 20) = 0.001842$



20/23 participants identified #13 as the most different

Dirichlet distributions for null

- seems to work in practice theoretical densities and observed frequencies of picking null plots match
- α gives a rough estimate of the spread of null distribution/difficulty of a lineup (without regarding : small α = small number of null plots attract picks)
- Weirdly, strong signal in data plot makes estimating α harder: Rorschach for α

Conclusions

- Use lineup scenario to get valid p-values for visual findings
- useful in situations where conventional methods break down
- lineups allow us to ask for 'why' ... insight to visual reasoning of participants