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Which of these panels looks the most different?
 1  2  3  4  5
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Figure 1. Which one of the plots, labelled 1 through 20 from top left to bottom right, is the most different from the
others?

2

Fig. 2. Example lineup using density plots: one plot of data embedded
with nineteen plots of null data. Which plot is most different from the
others? (See the text for the answer.)

the benefit of lineups for plot design evaluation we have conducted
an experiment that also contains simulated data, where the data is con-
structed to match and expand on the features of interest in the data. For
example, in a simple situation, where the discovered feature of interest
is a difference between the centers of two distributions, simulated data
would be constructed roughly matching the distribution of the data that
varies the distance between centers, and also spread and sample size.
Lineups of these simulated data (embedded with simulated null data
plots) are generated and evaluated along with the lineups of data. The
simulation study provides a backdrop for the real data, which enables
the broad applicability to be studied and a gauge for the strength of the
pattern in the data.

Lineups provide a way to statistically quantify the significance of
the finding [12]: think of the lineup as a set of m plots, one of which is
the data (in Figure 2, m = 20). The probability that an observer picks
the data plot just by chance, i.e. when it is really *not* different from
the other null plots, is 1/m. If an observer is able to identify the data
plot from the lineup, we reject the null hypothesis. This sets our Type
I error rate, a , at a level of 1/m.

When there are multiple independent observers (n) we have more
freedom in setting the significance level: assume that x out of those
n observers picked the data plot. Let X be the corresponding random
variable, i.e. X = # times out of n independent repetitions that the data
plot is picked from the lineup. Under the null hypothesis, X has a
Binomial distribution: X ⇠ Bn,1/m. We can then compute the p-value
of a lineup as the probability to have x or more observers picking the
data plot (under the assumption that the null hypothesis is true, i.e. the
plot is not different):

p-value = P(X � x | H0) = 1�Bn,1/m(x�1).

When comparing different tests of the same quantity, we consider
that test better if it has greater power. The power of a test is the proba-
bility to reject the null hypothesis, irrespective of whether it is true or
false – in a lineup this is the probability that an observer identifies the
plot of the real data. Analytically, power is usually difficult to calcu-
late because it is requires specific use of an alternative hypothesis to
calculate the probability. Work in [22] addresses this to some extent

with measures on the quality of a lineup, how numerically different,
as best it can be calculated, the data plot is from the null plots.

In our situation, though, it is fairly straightforward to estimate the
power of a lineup:

Let n be the number of independent observers and xi the
number of observers who picked plot i, i 2 {1, ...,m},
from the lineup. Then (x1,x2, ...,xm) follows a multino-
mial distribution Multp1,p2,...,pm(x1,x2, ...,xm) with Âi pi =
1, where pi is the probability that plot i is picked by an
observer, which we can estimate as bpi = xi/n.

The power of a lineup can therefore be estimated as the ratio of correct
identifications x out of n viewings. (More details on these derivations
can be found in [13].)

The power of lineups is used in the work presented here to eval-
uate the effectiveness of different plot designs. This paper describes
two examples where we had real data analysis problems and decisions
to make in order to communicate the results. Section 2 explains the
process of comparing designs. Section 3 describes two data analysis
problems, the experiments conducted to evaluate the plot designs, and
presents findings. We conclude in Section 4 and give suggestions for
future use.

2 COMPARISON OF DESIGNS

We are going to make use of the signal strength gained from multiple
viewings of a lineup in order to evaluate competing designs as follows:

1. Create Lineup Data: assuming that at least two variables, X
and Y are involved in the design, we create data for a lineup of
size m by creating m� 1 permutations of Y or, in the case of a
simulation study, drawing m�1 samples of size n (the number of
rows in the data) from the null distribution. Add the original data
to the lineup data randomly between 1 and m. The R package
nullabor provides a framework for easy creation of lineup
data.

2. Create lineups from competing designs: using the same data,
render lineups of all competing designs.

3. Evaluate Lineups: by presenting the lineups to independent ob-
servers. Assess both signal strength and time needed by individ-
uals to come to a decision. Note that each observer should only
be exposed to each lineup data once.

4. Evaluate Competing Designs: differences in signal strength or
time to decision are due to differences in the design. In the case
that individuals were shown multiple lineups (as part of a bigger
study), it is possible to correct outcome measurements for an
individual’s visual ability.

Comparing power of competing designs therefore involves compar-
ing percentages of correct responses bp1 and bp2. An a·100% confi-
dence interval for this comparison is given as

bp1 � bp2 ± t1�a/2,n�1

q
bp1(1� bp1)/n1 + bp2(1� bp2)/n2, (1)

where n is the Welch-Satterthwaite [27] estimate of the degrees of free-
dom. Note that we use bpi = (xi + 1)/(ni + 1) and ni + 2 for a better
coverage of the confidence interval [1]. In the case of more than two
competing designs, we have to additionally adjust the confidence in-
tervals for multiple testing, e.g. using a Bonferroni adjustment which
uses an adjusted confidence level ã = a/k, where k are the number
of confidence intervals involved (single adjustment) or the number of
comparisons anticipated.

While this allows a direct comparison of the designs, we cannot
adjust for the individuals’ perceptual abilities. In the case that we
have multiple responses from each person (i.e. data is collected on
several different lineup tasks), we can estimate their perceptual ability
and correct power differences between competing designs accordingly,
e.g. by modeling power using a subject-specific random intercept in a
generalized linear model.
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the benefit of lineups for plot design evaluation we have conducted
an experiment that also contains simulated data, where the data is con-
structed to match and expand on the features of interest in the data. For
example, in a simple situation, where the discovered feature of interest
is a difference between the centers of two distributions, simulated data
would be constructed roughly matching the distribution of the data that
varies the distance between centers, and also spread and sample size.
Lineups of these simulated data (embedded with simulated null data
plots) are generated and evaluated along with the lineups of data. The
simulation study provides a backdrop for the real data, which enables
the broad applicability to be studied and a gauge for the strength of the
pattern in the data.

Lineups provide a way to statistically quantify the significance of
the finding [12]: think of the lineup as a set of m plots, one of which is
the data (in Figure 2, m = 20). The probability that an observer picks
the data plot just by chance, i.e. when it is really *not* different from
the other null plots, is 1/m. If an observer is able to identify the data
plot from the lineup, we reject the null hypothesis. This sets our Type
I error rate, a , at a level of 1/m.

When there are multiple independent observers (n) we have more
freedom in setting the significance level: assume that x out of those
n observers picked the data plot. Let X be the corresponding random
variable, i.e. X = # times out of n independent repetitions that the data
plot is picked from the lineup. Under the null hypothesis, X has a
Binomial distribution: X ⇠ Bn,1/m. We can then compute the p-value
of a lineup as the probability to have x or more observers picking the
data plot (under the assumption that the null hypothesis is true, i.e. the
plot is not different):

p-value = P(X � x | H0) = 1�Bn,1/m(x�1).

When comparing different tests of the same quantity, we consider
that test better if it has greater power. The power of a test is the proba-
bility to reject the null hypothesis, irrespective of whether it is true or
false – in a lineup this is the probability that an observer identifies the
plot of the real data. Analytically, power is usually difficult to calcu-
late because it is requires specific use of an alternative hypothesis to
calculate the probability. Work in [22] addresses this to some extent

with measures on the quality of a lineup, how numerically different,
as best it can be calculated, the data plot is from the null plots.

In our situation, though, it is fairly straightforward to estimate the
power of a lineup:

Let n be the number of independent observers and xi the
number of observers who picked plot i, i 2 {1, ...,m},
from the lineup. Then (x1,x2, ...,xm) follows a multino-
mial distribution Multp1,p2,...,pm(x1,x2, ...,xm) with Âi pi =
1, where pi is the probability that plot i is picked by an
observer, which we can estimate as bpi = xi/n.

The power of a lineup can therefore be estimated as the ratio of correct
identifications x out of n viewings. (More details on these derivations
can be found in [13].)

The power of lineups is used in the work presented here to eval-
uate the effectiveness of different plot designs. This paper describes
two examples where we had real data analysis problems and decisions
to make in order to communicate the results. Section 2 explains the
process of comparing designs. Section 3 describes two data analysis
problems, the experiments conducted to evaluate the plot designs, and
presents findings. We conclude in Section 4 and give suggestions for
future use.

2 COMPARISON OF DESIGNS

We are going to make use of the signal strength gained from multiple
viewings of a lineup in order to evaluate competing designs as follows:

1. Create Lineup Data: assuming that at least two variables, X
and Y are involved in the design, we create data for a lineup of
size m by creating m� 1 permutations of Y or, in the case of a
simulation study, drawing m�1 samples of size n (the number of
rows in the data) from the null distribution. Add the original data
to the lineup data randomly between 1 and m. The R package
nullabor provides a framework for easy creation of lineup
data.

2. Create lineups from competing designs: using the same data,
render lineups of all competing designs.

3. Evaluate Lineups: by presenting the lineups to independent ob-
servers. Assess both signal strength and time needed by individ-
uals to come to a decision. Note that each observer should only
be exposed to each lineup data once.

4. Evaluate Competing Designs: differences in signal strength or
time to decision are due to differences in the design. In the case
that individuals were shown multiple lineups (as part of a bigger
study), it is possible to correct outcome measurements for an
individual’s visual ability.

Comparing power of competing designs therefore involves compar-
ing percentages of correct responses bp1 and bp2. An a·100% confi-
dence interval for this comparison is given as

bp1 � bp2 ± t1�a/2,n�1

q
bp1(1� bp1)/n1 + bp2(1� bp2)/n2, (1)

where n is the Welch-Satterthwaite [27] estimate of the degrees of free-
dom. Note that we use bpi = (xi + 1)/(ni + 1) and ni + 2 for a better
coverage of the confidence interval [1]. In the case of more than two
competing designs, we have to additionally adjust the confidence in-
tervals for multiple testing, e.g. using a Bonferroni adjustment which
uses an adjusted confidence level ã = a/k, where k are the number
of confidence intervals involved (single adjustment) or the number of
comparisons anticipated.

While this allows a direct comparison of the designs, we cannot
adjust for the individuals’ perceptual abilities. In the case that we
have multiple responses from each person (i.e. data is collected on
several different lineup tasks), we can estimate their perceptual ability
and correct power differences between competing designs accordingly,
e.g. by modeling power using a subject-specific random intercept in a
generalized linear model.

data is in panel #13
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example, in a simple situation, where the discovered feature of interest
is a difference between the centers of two distributions, simulated data
would be constructed roughly matching the distribution of the data that
varies the distance between centers, and also spread and sample size.
Lineups of these simulated data (embedded with simulated null data
plots) are generated and evaluated along with the lineups of data. The
simulation study provides a backdrop for the real data, which enables
the broad applicability to be studied and a gauge for the strength of the
pattern in the data.

Lineups provide a way to statistically quantify the significance of
the finding [12]: think of the lineup as a set of m plots, one of which is
the data (in Figure 2, m = 20). The probability that an observer picks
the data plot just by chance, i.e. when it is really *not* different from
the other null plots, is 1/m. If an observer is able to identify the data
plot from the lineup, we reject the null hypothesis. This sets our Type
I error rate, a , at a level of 1/m.

When there are multiple independent observers (n) we have more
freedom in setting the significance level: assume that x out of those
n observers picked the data plot. Let X be the corresponding random
variable, i.e. X = # times out of n independent repetitions that the data
plot is picked from the lineup. Under the null hypothesis, X has a
Binomial distribution: X ⇠ Bn,1/m. We can then compute the p-value
of a lineup as the probability to have x or more observers picking the
data plot (under the assumption that the null hypothesis is true, i.e. the
plot is not different):

p-value = P(X � x | H0) = 1�Bn,1/m(x�1).

When comparing different tests of the same quantity, we consider
that test better if it has greater power. The power of a test is the proba-
bility to reject the null hypothesis, irrespective of whether it is true or
false – in a lineup this is the probability that an observer identifies the
plot of the real data. Analytically, power is usually difficult to calcu-
late because it is requires specific use of an alternative hypothesis to
calculate the probability. Work in [22] addresses this to some extent

with measures on the quality of a lineup, how numerically different,
as best it can be calculated, the data plot is from the null plots.

In our situation, though, it is fairly straightforward to estimate the
power of a lineup:

Let n be the number of independent observers and xi the
number of observers who picked plot i, i 2 {1, ...,m},
from the lineup. Then (x1,x2, ...,xm) follows a multino-
mial distribution Multp1,p2,...,pm(x1,x2, ...,xm) with Âi pi =
1, where pi is the probability that plot i is picked by an
observer, which we can estimate as bpi = xi/n.

The power of a lineup can therefore be estimated as the ratio of correct
identifications x out of n viewings. (More details on these derivations
can be found in [13].)

The power of lineups is used in the work presented here to eval-
uate the effectiveness of different plot designs. This paper describes
two examples where we had real data analysis problems and decisions
to make in order to communicate the results. Section 2 explains the
process of comparing designs. Section 3 describes two data analysis
problems, the experiments conducted to evaluate the plot designs, and
presents findings. We conclude in Section 4 and give suggestions for
future use.

2 COMPARISON OF DESIGNS

We are going to make use of the signal strength gained from multiple
viewings of a lineup in order to evaluate competing designs as follows:

1. Create Lineup Data: assuming that at least two variables, X
and Y are involved in the design, we create data for a lineup of
size m by creating m� 1 permutations of Y or, in the case of a
simulation study, drawing m�1 samples of size n (the number of
rows in the data) from the null distribution. Add the original data
to the lineup data randomly between 1 and m. The R package
nullabor provides a framework for easy creation of lineup
data.

2. Create lineups from competing designs: using the same data,
render lineups of all competing designs.

3. Evaluate Lineups: by presenting the lineups to independent ob-
servers. Assess both signal strength and time needed by individ-
uals to come to a decision. Note that each observer should only
be exposed to each lineup data once.

4. Evaluate Competing Designs: differences in signal strength or
time to decision are due to differences in the design. In the case
that individuals were shown multiple lineups (as part of a bigger
study), it is possible to correct outcome measurements for an
individual’s visual ability.

Comparing power of competing designs therefore involves compar-
ing percentages of correct responses bp1 and bp2. An a·100% confi-
dence interval for this comparison is given as

bp1 � bp2 ± t1�a/2,n�1

q
bp1(1� bp1)/n1 + bp2(1� bp2)/n2, (1)

where n is the Welch-Satterthwaite [27] estimate of the degrees of free-
dom. Note that we use bpi = (xi + 1)/(ni + 1) and ni + 2 for a better
coverage of the confidence interval [1]. In the case of more than two
competing designs, we have to additionally adjust the confidence in-
tervals for multiple testing, e.g. using a Bonferroni adjustment which
uses an adjusted confidence level ã = a/k, where k are the number
of confidence intervals involved (single adjustment) or the number of
comparisons anticipated.

While this allows a direct comparison of the designs, we cannot
adjust for the individuals’ perceptual abilities. In the case that we
have multiple responses from each person (i.e. data is collected on
several different lineup tasks), we can estimate their perceptual ability
and correct power differences between competing designs accordingly,
e.g. by modeling power using a subject-specific random intercept in a
generalized linear model.

data is in panel #13

20/23 participants 
identified #13 as the 

most different
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satisfied, then the empirical distribution of the residuals may not resemble the hypothesized

distribution under a properly specified model. When this occurs, individual Q-Q plots will

often lead to erroneous conclusions about the distributional assumptions which can be

overcome, at least partially, using lineups.
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Figure 9: Lineup testing for normality of the random slope for the radon data. Which of

the plots is the most di↵erent? Which feature led you to your choice?

Figures 9 and 10 illustrate the use of lineups to test the distributional assumptions in

a linear mixed-e↵ects model. Figure 9 presents a lineup of the predicted random slopes

from the radon study, in which group sizes are very unbalanced and there is a high de-

gree of shrinkage. Confidence bands based on the normal distribution are applied to each

lineup and reveal that the empirical distribution of the predicted random e↵ects—both
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satisfied, then the empirical distribution of the residuals may not resemble the hypothesized

distribution under a properly specified model. When this occurs, individual Q-Q plots will

often lead to erroneous conclusions about the distributional assumptions which can be

overcome, at least partially, using lineups.
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Figure 9: Lineup testing for normality of the random slope for the radon data. Which of

the plots is the most di↵erent? Which feature led you to your choice?

Figures 9 and 10 illustrate the use of lineups to test the distributional assumptions in

a linear mixed-e↵ects model. Figure 9 presents a lineup of the predicted random slopes

from the radon study, in which group sizes are very unbalanced and there is a high de-

gree of shrinkage. Confidence bands based on the normal distribution are applied to each

lineup and reveal that the empirical distribution of the predicted random e↵ects—both
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satisfied, then the empirical distribution of the residuals may not resemble the hypothesized

distribution under a properly specified model. When this occurs, individual Q-Q plots will

often lead to erroneous conclusions about the distributional assumptions which can be

overcome, at least partially, using lineups.
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Figure 9: Lineup testing for normality of the random slope for the radon data. Which of

the plots is the most di↵erent? Which feature led you to your choice?

Figures 9 and 10 illustrate the use of lineups to test the distributional assumptions in

a linear mixed-e↵ects model. Figure 9 presents a lineup of the predicted random slopes

from the radon study, in which group sizes are very unbalanced and there is a high de-

gree of shrinkage. Confidence bands based on the normal distribution are applied to each

lineup and reveal that the empirical distribution of the predicted random e↵ects—both
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satisfied, then the empirical distribution of the residuals may not resemble the hypothesized

distribution under a properly specified model. When this occurs, individual Q-Q plots will

often lead to erroneous conclusions about the distributional assumptions which can be

overcome, at least partially, using lineups.
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Figure 9: Lineup testing for normality of the random slope for the radon data. Which of

the plots is the most di↵erent? Which feature led you to your choice?

Figures 9 and 10 illustrate the use of lineups to test the distributional assumptions in

a linear mixed-e↵ects model. Figure 9 presents a lineup of the predicted random slopes

from the radon study, in which group sizes are very unbalanced and there is a high de-

gree of shrinkage. Confidence bands based on the normal distribution are applied to each

lineup and reveal that the empirical distribution of the predicted random e↵ects—both
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Which of these panels looks the most different?
 1  2  3  4  5

 6  7  8  9 10

11 12 13 14 15

16 17 18 19 20

Figure 1. Which one of the plots, labelled 1 through 20 from top left to bottom right, is the most different from the
others?

2

satisfied, then the empirical distribution of the residuals may not resemble the hypothesized

distribution under a properly specified model. When this occurs, individual Q-Q plots will

often lead to erroneous conclusions about the distributional assumptions which can be

overcome, at least partially, using lineups.
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Figure 9: Lineup testing for normality of the random slope for the radon data. Which of

the plots is the most di↵erent? Which feature led you to your choice?

Figures 9 and 10 illustrate the use of lineups to test the distributional assumptions in

a linear mixed-e↵ects model. Figure 9 presents a lineup of the predicted random slopes

from the radon study, in which group sizes are very unbalanced and there is a high de-

gree of shrinkage. Confidence bands based on the normal distribution are applied to each

lineup and reveal that the empirical distribution of the predicted random e↵ects—both
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Which of these panels looks the most different?
 1  2  3  4  5

 6  7  8  9 10

11 12 13 14 15

16 17 18 19 20

Figure 1. Which one of the plots, labelled 1 through 20 from top left to bottom right, is the most different from the
others?

2

satisfied, then the empirical distribution of the residuals may not resemble the hypothesized

distribution under a properly specified model. When this occurs, individual Q-Q plots will

often lead to erroneous conclusions about the distributional assumptions which can be

overcome, at least partially, using lineups.
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Figure 9: Lineup testing for normality of the random slope for the radon data. Which of

the plots is the most di↵erent? Which feature led you to your choice?

Figures 9 and 10 illustrate the use of lineups to test the distributional assumptions in

a linear mixed-e↵ects model. Figure 9 presents a lineup of the predicted random slopes

from the radon study, in which group sizes are very unbalanced and there is a high de-

gree of shrinkage. Confidence bands based on the normal distribution are applied to each

lineup and reveal that the empirical distribution of the predicted random e↵ects—both
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Which of these panels looks the most different?
 1  2  3  4  5

 6  7  8  9 10

11 12 13 14 15

16 17 18 19 20

Figure 1. Which one of the plots, labelled 1 through 20 from top left to bottom right, is the most different from the
others?

2

satisfied, then the empirical distribution of the residuals may not resemble the hypothesized

distribution under a properly specified model. When this occurs, individual Q-Q plots will

often lead to erroneous conclusions about the distributional assumptions which can be

overcome, at least partially, using lineups.
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Figure 9: Lineup testing for normality of the random slope for the radon data. Which of

the plots is the most di↵erent? Which feature led you to your choice?

Figures 9 and 10 illustrate the use of lineups to test the distributional assumptions in

a linear mixed-e↵ects model. Figure 9 presents a lineup of the predicted random slopes

from the radon study, in which group sizes are very unbalanced and there is a high de-

gree of shrinkage. Confidence bands based on the normal distribution are applied to each

lineup and reveal that the empirical distribution of the predicted random e↵ects—both
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data is in panel #13

12/72 participants 
identified #13 as the 
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What is the p-value 
of this finding?
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Back up:

• Lineup protocol in general

• Construction of Lineup in this example
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Graphical vs Classical

Dagstuhl  Information Visualization, Visual Data Mining & Machine Learning 

Classical vs Graphical
Comparison: Visual vs Mathematical Inference

Model: Y = �0 + �X + ⇥; ⇥
iid� N(0,⇤2)

Mathematical Inference Visual Inference
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• Assume K independent observers evaluate a 
lineup

• Let X denote the number of data identifications

• quantify visual p-value: Pr(X ≥ x | H0 true)

Visual p-values
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The Electoral 
Building

• result from the 2012 
US election

• each state a rectangle:  
width: margin of 
majority party over 
minority  
height: #electoral 
votes 

union is represented by a rectangle. The difference in poll results is plotted horizontally, while the height of each box
corresponds to the number of that state’s electoral votes. Color indicates party affiliation. The null hypothesis is that
“the election results are consistent with the polls”. Therefore the polling results provide the null model from which
data is simulated. A normal model with mean and standard deviation based on a poll and its margin of error is used to
simulate different scenarios that might have resulted on election day, if the polls were on target. Each null data set is
generated as a set of draws from this model. These samples are plotted as electoral buildings, and the plot based on
the actual election results is placed randomly among the null plots in a lineup of size 5 ⇥ 4. If the null hypothesis is
true, the data plot should look like any of the other plots, and not be identifiable by an observer. Figure 2 shows the
plot of the electoral building with the additional context information and labels.
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Figure 2. Electoral building plot of the results of the 2012 U.S. Presidential Election (left). On the right two
histograms showing simulated poll results for the Democratic presidential candidate using polling averages collected
from two different sources, Freedom’s Lighthouse Averages (top), RealClearPolitics (bottom). If the polls matched the
electoral result the simulated results would be centered at the electoral result. This happens for the RealClearPolitics
polls (bottom) but not for Freedom’s Lighthouse. For the latter, only 5.33% of simulated results were as high as the
actual election result, which converts to a p-value of 0.0533, indicating an almost statistically significant difference.
It hints at the polls from this source under-estimating the vote for Obama. This source was used to generate the null
plots in the lineup in Figure 1. The p-value from the lineup protocol, was 0.0077, which more strongly concludes that
these polls mismatched the actual result.

The lineup of Figure 1, as well as the other lineups in the manuscript are created using the nullabor package by
(Wickham et al., 2014).

A lineup can be evaluated by a single person or multiple observers. A distribution similar to the binomial distri-
bution, but adjusted for dependencies introduced by the lineup scenario, is used to calculate the p-value based on the
number of times observers identify the actual data plot, which provides the information needed to make a decision on
rejecting or failing to reject the null hypothesis (Hofmann and Röttger, 2015). To avoid expectation errors (Meilgaard
et al., 2006), particularly in emotionally charged areas such as election results, observers should not be aware of the
data that constitutes a lineup, and should therefore not have seen the actual data plot before inspecting the lineup.

3
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Null plots

• Null hypothesis: 
election outcome is 
consistent with polling 
results

• Each null plot consists 
of sample from a 
pollster’s predictions
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others?
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Lineup
• Data is randomly 

placed among the null 
plots

• If the data is 
indistinguishable from 
the null, the election 
results are consistent 
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visual p-value:  P(#data plot picks ≥ 12)
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Data from lineup evaluation
• For lineup of size m we observe  

X = (X1, …, Xm) ~ Multp1, p2, …, pm

• with 0 ≤ pi ≤ 1 and  ∑i pi = 1

• w.lo.g. data plot in panel m,  
ie Xm ~ Binom(K, pm)  
K independent evaluations

• What is distribution of Xm under null?  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Evaluating lineup evaluations

• Assuming X ~ Binom(72, 1/20)

• p-value for 12 data picks is 
P(X ≥ 12) = 0.00023
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Generally:  pm depends on p1, …, pm-1, varies with lineup
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Null Distribution of p

• Two other plots were  
selected at least as often 
as the data plot

• Distribution of null plot  
picks far from uniform

2 0 0 22 1

6 0 12 3 1

4 2 12 1 0

3 0 0 1 2
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Null Distribution of p

• pi is probability to pick panel i

• Assume that under the null, all  
panels have the same distribution:  
 p = (p1, …, pm) ~ Dirichlet(α), α > 0  
a flat Dirichlet distribution 

• Estimate rate α from observed (p1, …, pm-1)’  
where (p1, …, pm-1)’ is rescaled without data plot
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Distribution of (p1, …, pm-1)’ 
• flat Dirichlet(α) for (p1, …, pm-1)’ seems reasonable

• no obvious preference for location
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Dirichlet distributions estimated 
for each of nine different 

experiments

Distribution of (p1, …, pm-1)’ 
• flat Dirichlet(α) for (p1, …, pm-1)’ seems reasonable

• no obvious preference for location
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Dirichlet distributions estimated 
for each of nine different 

experiments

Distribution of (p1, …, pm-1)’ 
• flat Dirichlet(α) for (p1, …, pm-1)’ seems reasonable

• no obvious preference for location
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Dirichlet distributions estimated 
for each of nine different 

experiments

Distribution of (p1, …, pm-1)’ 
• flat Dirichlet(α) for (p1, …, pm-1)’ seems reasonable

• no obvious preference for location

 turk1  turk2  turk3  turk4  turk5  turk6  turk7  turk9 turk10
  0.34   0.14   0.33   0.13   0.13   0.15   0.15   0.14   0.12
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visual p-value

• p-value based on Binom(72, 1/20)  
P(X ≥ 12) = 0.00023

• p-value based on Dirichlet approach:  
P(X ≥ 12) = 0.11396

 1  2  3  4  5

 6  7  8  9 10

11 12 13 14 15

16 17 18 19 20

Figure 1. Which one of the plots, labelled 1 through 20 from top left to bottom right, is the most different from the
others?

2

12/72 participants 
identified #13 as the 

most different
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visual p-value

• p-value based on Binom(23, 1/20)  
P(X ≥ 20) ≤ 0.00001

• p-value based on Dirichlet approach:  
P(X ≥ 20) = 0.001842

 1  2  3  4  5

 6  7  8  9 10

11 12 13 14 15

16 17 18 19 20

Figure 1. Which one of the plots, labelled 1 through 20 from top left to bottom right, is the most different from the
others?

2

20/23 participants 
identified #13 as the 

most different

Fig. 2. Example lineup using density plots: one plot of data embedded
with nineteen plots of null data. Which plot is most different from the
others? (See the text for the answer.)

the benefit of lineups for plot design evaluation we have conducted
an experiment that also contains simulated data, where the data is con-
structed to match and expand on the features of interest in the data. For
example, in a simple situation, where the discovered feature of interest
is a difference between the centers of two distributions, simulated data
would be constructed roughly matching the distribution of the data that
varies the distance between centers, and also spread and sample size.
Lineups of these simulated data (embedded with simulated null data
plots) are generated and evaluated along with the lineups of data. The
simulation study provides a backdrop for the real data, which enables
the broad applicability to be studied and a gauge for the strength of the
pattern in the data.

Lineups provide a way to statistically quantify the significance of
the finding [12]: think of the lineup as a set of m plots, one of which is
the data (in Figure 2, m = 20). The probability that an observer picks
the data plot just by chance, i.e. when it is really *not* different from
the other null plots, is 1/m. If an observer is able to identify the data
plot from the lineup, we reject the null hypothesis. This sets our Type
I error rate, a , at a level of 1/m.

When there are multiple independent observers (n) we have more
freedom in setting the significance level: assume that x out of those
n observers picked the data plot. Let X be the corresponding random
variable, i.e. X = # times out of n independent repetitions that the data
plot is picked from the lineup. Under the null hypothesis, X has a
Binomial distribution: X ⇠ Bn,1/m. We can then compute the p-value
of a lineup as the probability to have x or more observers picking the
data plot (under the assumption that the null hypothesis is true, i.e. the
plot is not different):

p-value = P(X � x | H0) = 1�Bn,1/m(x�1).

When comparing different tests of the same quantity, we consider
that test better if it has greater power. The power of a test is the proba-
bility to reject the null hypothesis, irrespective of whether it is true or
false – in a lineup this is the probability that an observer identifies the
plot of the real data. Analytically, power is usually difficult to calcu-
late because it is requires specific use of an alternative hypothesis to
calculate the probability. Work in [22] addresses this to some extent

with measures on the quality of a lineup, how numerically different,
as best it can be calculated, the data plot is from the null plots.

In our situation, though, it is fairly straightforward to estimate the
power of a lineup:

Let n be the number of independent observers and xi the
number of observers who picked plot i, i 2 {1, ...,m},
from the lineup. Then (x1,x2, ...,xm) follows a multino-
mial distribution Multp1,p2,...,pm(x1,x2, ...,xm) with Âi pi =
1, where pi is the probability that plot i is picked by an
observer, which we can estimate as bpi = xi/n.

The power of a lineup can therefore be estimated as the ratio of correct
identifications x out of n viewings. (More details on these derivations
can be found in [13].)

The power of lineups is used in the work presented here to eval-
uate the effectiveness of different plot designs. This paper describes
two examples where we had real data analysis problems and decisions
to make in order to communicate the results. Section 2 explains the
process of comparing designs. Section 3 describes two data analysis
problems, the experiments conducted to evaluate the plot designs, and
presents findings. We conclude in Section 4 and give suggestions for
future use.

2 COMPARISON OF DESIGNS

We are going to make use of the signal strength gained from multiple
viewings of a lineup in order to evaluate competing designs as follows:

1. Create Lineup Data: assuming that at least two variables, X
and Y are involved in the design, we create data for a lineup of
size m by creating m� 1 permutations of Y or, in the case of a
simulation study, drawing m�1 samples of size n (the number of
rows in the data) from the null distribution. Add the original data
to the lineup data randomly between 1 and m. The R package
nullabor provides a framework for easy creation of lineup
data.

2. Create lineups from competing designs: using the same data,
render lineups of all competing designs.

3. Evaluate Lineups: by presenting the lineups to independent ob-
servers. Assess both signal strength and time needed by individ-
uals to come to a decision. Note that each observer should only
be exposed to each lineup data once.

4. Evaluate Competing Designs: differences in signal strength or
time to decision are due to differences in the design. In the case
that individuals were shown multiple lineups (as part of a bigger
study), it is possible to correct outcome measurements for an
individual’s visual ability.

Comparing power of competing designs therefore involves compar-
ing percentages of correct responses bp1 and bp2. An a·100% confi-
dence interval for this comparison is given as

bp1 � bp2 ± t1�a/2,n�1

q
bp1(1� bp1)/n1 + bp2(1� bp2)/n2, (1)

where n is the Welch-Satterthwaite [27] estimate of the degrees of free-
dom. Note that we use bpi = (xi + 1)/(ni + 1) and ni + 2 for a better
coverage of the confidence interval [1]. In the case of more than two
competing designs, we have to additionally adjust the confidence in-
tervals for multiple testing, e.g. using a Bonferroni adjustment which
uses an adjusted confidence level ã = a/k, where k are the number
of confidence intervals involved (single adjustment) or the number of
comparisons anticipated.

While this allows a direct comparison of the designs, we cannot
adjust for the individuals’ perceptual abilities. In the case that we
have multiple responses from each person (i.e. data is collected on
several different lineup tasks), we can estimate their perceptual ability
and correct power differences between competing designs accordingly,
e.g. by modeling power using a subject-specific random intercept in a
generalized linear model.
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Dirichlet distributions  
for null

• seems to work in practice - theoretical densities 
and observed frequencies of picking null plots 
match

• α gives a rough estimate of the spread of null 
distribution/difficulty of a lineup (without 
regarding : small α = small number of null plots 
attract picks)

• Weirdly, strong signal in data plot makes 
estimating α harder: Rorschach for α
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Conclusions

• Use lineup scenario to get valid p-values for visual 
findings 

• useful in situations where conventional methods 
break down

• lineups allow us to ask for ‘why’ … insight to visual 
reasoning of participants


