
Process Automation as the Backbone of

Reproducible Science

Brian Lee Yung Rowe

June 4, 2020

Founder & CEO, Pez.AI

CEO, FundKo

Introduction

About Me

• Founder & CEO of Pez.AI, productivity chatbots that make

communication and coordination more efficient

• CEO of FundKo, P2P lender in Philippines using behavioral

economics to improve lending outcomes

• Author of Introduction to Reproducible Science in R, to be

published by Chapman and Hall/CRC Press

• 6 years adjunct: NLP, machine learning, predictive analytics,

mathematics

• 14 years quantitative finance/investment management

1

https://pez.ai
https://fundko.com

Outline

• Why reproducible science?

• Process automation: code as methodology

• Process automation: computing environment

• Pearls of wisdom

2

Why Reproducible Science

What is truth?

Does hydroxychloroquine increase mortality rate of COVID-19?

3

Which is correct?

22 May (Lancet, NEJM):

(Source)

2-3 June (Lancet, NEJM):

(Source)

4

https://www.theguardian.com/world/2020/jun/03/covid-19-surgisphere-who-world-health-organization-hydroxychloroquine
https://www.thelancet.com/journals/lanpub/article/PIIS0140-6736(20)31290-3/fulltext
https://www.nejm.org/doi/full/10.1056/NEJMe2020822?query=featured%E2%80%94coronavirus
https://www.theguardian.com/world/2020/jun/03/how-were-medical-journals-and-who-caught-out-over-hydroxychloroquine

Which is correct?

22 May (Lancet, NEJM):

(Source)

2-3 June (Lancet, NEJM):

(Source)

4

https://www.theguardian.com/world/2020/jun/03/covid-19-surgisphere-who-world-health-organization-hydroxychloroquine
https://www.thelancet.com/journals/lanpub/article/PIIS0140-6736(20)31290-3/fulltext
https://www.nejm.org/doi/full/10.1056/NEJMe2020822?query=featured%E2%80%94coronavirus
https://www.theguardian.com/world/2020/jun/03/how-were-medical-journals-and-who-caught-out-over-hydroxychloroquine

Reproducing results is hard

Source: Nature

5

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

Truth as a gradient

Truth only exists when claims can be confirmed

Source: Introduction to Reproducible Science in R – Brian Lee Yung Rowe (based on NSF definitions)

6

Example: Computer Vision/Image Classification

Repeatable Reproducible

Replicable Generalizable (FAIL)

7

Factors Driving Reproducibility

Research is more reproducible when methodology and environment

are transparent and accessible

reproducibility ∼ methodology + environment (1)

8

Opaque Methodology

• vague/no documentation

• vague/undocumented data lineage and provenance

• undocumented assumptions

• manual steps

• spaghetti code

9

Inaccessible Environment

(Source: Energy considerations for training deep neural networks)

Cost: $32/hour * 168 hours = $5376

• massive system requirements

• esoteric system requirements

• esoteric dependencies

• non-free data/tools

10

https://ekamperi.github.io/machine%20learning/2019/08/14/energy-considerations-dnn.html
https://cloud.google.com/tpu/pricing

Process Automation: Methodology

Reproducibility as optimization problem

Objective: minimize time to reproduce results

min reproduce(env ,method) (2)

s.t.

env, method are transparent and accessible

11

The Data Science Paradox

The worse you are at programming, the more time you spend doing

it.

tcoding ∼ skillcoding (3)

Corollary

bugs ∼ skillcoding + testing (4)

Conclusion: Rigorous software development practice is required for

reproducibility

12

The Data Science Paradox

The worse you are at programming, the more time you spend doing

it.

tcoding ∼ skillcoding (3)

Corollary

bugs ∼ skillcoding + testing (4)

Conclusion: Rigorous software development practice is required for

reproducibility

12

The Data Science Paradox

The worse you are at programming, the more time you spend doing

it.

tcoding ∼ skillcoding (3)

Corollary

bugs ∼ skillcoding + testing (4)

Conclusion: Rigorous software development practice is required for

reproducibility

12

Code Is Your Methodology

Transparent and accessible code

is easier to understand, faster to

confirm, identify, troubleshoot

bugs and avoids unnecessary

retractions.

13

Automate Modeling Workflows

• Collecting/generating data

• Exploring data

• Parsing/transforming data

• Training a model

• Model validation

• Predictions

• Reporting

14

Automate Software Development Workflows

• project initiation

• building code

• testing code

• deploying code

• running code

• storing/versioning code

15

Project Initiation

Use standard directory structures and consistent naming

conventions

1 #!/bin/bash

2

3 project=$1

4 mkdir -p $project/R $

project/tests

5 cd $project

6 git init

16

Building Code

Create package, train model, build image

Inaccessible

1 $ R CMD build --compact -vignettes=gs+qpdf $MY_PACKAGE

Accessible

1 $ make build

17

Testing Code

Inaccessible

1 $ R CMD check --as -cran $MY_PACKAGE.tar.gz

2 $ pytest test

Accessible

1 $ make test

18

Train Model

Inaccessible

1 $ Rscript --vanilla -e \

2 "library($MY_PACKAGE); \

3 withCallingHandlers(train_model($INPUT , $OUTPUT),

\

4 warning=function(w) stop(w))"

Accessible

1 $ make train performance

19

Run Notebook

Inaccessible

1 $ docker run -it -p 8888:8888 $(MOUNT_HOSTDIR) -u

jovyan -w /app/$(PACKAGE)/notebooks $(IMAGE)

jupyter notebook --allow -root

Accessible

1 $ make notebook

20

Generate Report

Inaccessible

1 $ R

2

3 > library(rmarkdown)

4 > rmarkdown :: render("reports/myreport.Rmd")

Accessible

1 $ make REPORT=reports/myreport.Rmd report

21

Process Automation: Environment

The Computing Environment

• Processor

• Memory

• Cache

• Disk

• Networking

• Operating system

• Software dependencies

• Package dependencies

22

Interlude: Computing History

1970s

Dumb terminals -

mainframes

late 1970s - 2000s

Personal computers

2000s - present

Smart terminals -

mainframes

23

21st Century Virtual Solution

Environment creation and management is virtual and automatable

• Cloud IaaS solves hardware issues

• Containers solve software issues

24

Containers

25

Example: Dockerfile

Environment creation becomes transparent via automation

1 FROM jupyter/minimal -notebook:dc9744740e12

2 MAINTAINER rowe@zatonovo.com

3

4 USER root

5 ENV DEBIAN_FRONTEND noninteractive

6

7 RUN \

8 apt -get update && \

9 apt -get install -qy software -properties -common && \

10 add -apt -repository -y ppa:opencpu/opencpu -2.0 && \

11 apt -get update && \

12 apt -get install -qy opencpu -server x11 -apps

13

14 # Set opencpu password so that we can login

15 RUN \

16 echo "opencpu:opencpu" | chpasswd
26

Dependency managers

System packages (debian)

1 RUN apt -get install -qy package -1 package -2

Python packages

1 RUN pip3 install package -1 package -2

2 RUN pip3 install -r requirements.txt

R packages (crant)

1 RUN rpackage package -1 package -2

27

https://github.com/zatonovo/crant

Example: GCP

1 $ docker build -t [DOCKER_IMAGE] .

2 $ docker push [DOCKER_IMAGE] .

3 $ gcloud compute instances \

4 create -with -container [INSTANCE_NAME] \

5 --container -image [DOCKER_IMAGE]

28

Orchestration

Create collection of connected services

29

Pearls of Wisdom

Apply Empathy and Consider Others Using Your Code

Transparent:

• Self-contained workflows with no hidden (e.g., manual) steps

• Documentation that explains decisions/rationale for

algorithms

• Consistent, simple code that is easy to read and debug

• Right tool for job

Accessible:

• Easy to use end-user interfaces (e.g., make)

• Dataset easily acquired

• No human in the loop workflows

• Minimal dependencies

• Minimal cost

30

Apply Empathy and Consider Others Using Your Code

Transparent:

• Self-contained workflows with no hidden (e.g., manual) steps

• Documentation that explains decisions/rationale for

algorithms

• Consistent, simple code that is easy to read and debug

• Right tool for job

Accessible:

• Easy to use end-user interfaces (e.g., make)

• Dataset easily acquired

• No human in the loop workflows

• Minimal dependencies

• Minimal cost

30

Assume Everything Will Be Done Again

Focus on repeatability:

• Use containers to exactly create your environment

• Use Linux to simplify scripting/automation

• Write executable scripts (e.g., bash) to document processes

• Minimize interactive development

• Create functions as much as possible

• Use error handling to avoid frustration

31

Thank You

Questions: rowe@zatonovo.com

Twitch: @cartesianfaith ← experiment for live data science/coding

help

Twitter: @cartesianfaith

Personal website: https://cartesianfaith.com

32

mailto:rowe@zatonovo.com

	Introduction
	Why Reproducible Science
	Process Automation: Methodology
	Process Automation: Environment
	Pearls of Wisdom

