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Introduction



About Me

• Founder & CEO of Pez.AI, productivity chatbots that make

communication and coordination more efficient

• CEO of FundKo, P2P lender in Philippines using behavioral

economics to improve lending outcomes

• Author of Introduction to Reproducible Science in R, to be

published by Chapman and Hall/CRC Press

• 6 years adjunct: NLP, machine learning, predictive analytics,

mathematics

• 14 years quantitative finance/investment management
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https://pez.ai
https://fundko.com


Outline

• Why reproducible science?

• Process automation: code as methodology

• Process automation: computing environment

• Pearls of wisdom
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Why Reproducible Science



What is truth?

Does hydroxychloroquine increase mortality rate of COVID-19?
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Which is correct?

22 May (Lancet, NEJM):

(Source)

2-3 June (Lancet, NEJM):

(Source)
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https://www.theguardian.com/world/2020/jun/03/covid-19-surgisphere-who-world-health-organization-hydroxychloroquine
https://www.thelancet.com/journals/lanpub/article/PIIS0140-6736(20)31290-3/fulltext
https://www.nejm.org/doi/full/10.1056/NEJMe2020822?query=featured%E2%80%94coronavirus
https://www.theguardian.com/world/2020/jun/03/how-were-medical-journals-and-who-caught-out-over-hydroxychloroquine
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Reproducing results is hard

Source: Nature
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https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970


Truth as a gradient

Truth only exists when claims can be confirmed

Source: Introduction to Reproducible Science in R – Brian Lee Yung Rowe (based on NSF definitions)
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Example: Computer Vision/Image Classification

Repeatable Reproducible

Replicable Generalizable (FAIL)
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Factors Driving Reproducibility

Research is more reproducible when methodology and environment

are transparent and accessible

reproducibility ∼ methodology + environment (1)
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Opaque Methodology

• vague/no documentation

• vague/undocumented data lineage and provenance

• undocumented assumptions

• manual steps

• spaghetti code
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Inaccessible Environment

(Source: Energy considerations for training deep neural networks)

Cost: $32/hour * 168 hours = $5376

• massive system requirements

• esoteric system requirements

• esoteric dependencies

• non-free data/tools
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https://ekamperi.github.io/machine%20learning/2019/08/14/energy-considerations-dnn.html
https://cloud.google.com/tpu/pricing


Process Automation: Methodology



Reproducibility as optimization problem

Objective: minimize time to reproduce results

min reproduce(env ,method) (2)

s.t.

env, method are transparent and accessible
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The Data Science Paradox

The worse you are at programming, the more time you spend doing

it.

tcoding ∼ skillcoding (3)

Corollary

bugs ∼ skillcoding + testing (4)

Conclusion: Rigorous software development practice is required for

reproducibility
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Code Is Your Methodology

Transparent and accessible code

is easier to understand, faster to

confirm, identify, troubleshoot

bugs and avoids unnecessary

retractions.
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Automate Modeling Workflows

• Collecting/generating data

• Exploring data

• Parsing/transforming data

• Training a model

• Model validation

• Predictions

• Reporting
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Automate Software Development Workflows

• project initiation

• building code

• testing code

• deploying code

• running code

• storing/versioning code
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Project Initiation

Use standard directory structures and consistent naming

conventions

1 #!/bin/bash

2

3 project=$1

4 mkdir -p $project/R $

project/tests

5 cd $project

6 git init
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Building Code

Create package, train model, build image

Inaccessible

1 $ R CMD build --compact -vignettes=gs+qpdf $MY_PACKAGE

Accessible

1 $ make build
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Testing Code

Inaccessible

1 $ R CMD check --as -cran $MY_PACKAGE.tar.gz

2 $ pytest test

Accessible

1 $ make test
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Train Model

Inaccessible

1 $ Rscript --vanilla -e \

2 "library($MY_PACKAGE); \

3 withCallingHandlers(train_model($INPUT , $OUTPUT),

\

4 warning=function(w) stop(w))"

Accessible

1 $ make train performance
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Run Notebook

Inaccessible

1 $ docker run -it -p 8888:8888 $(MOUNT_HOSTDIR) -u

jovyan -w /app/$(PACKAGE)/notebooks $(IMAGE)

jupyter notebook --allow -root

Accessible

1 $ make notebook
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Generate Report

Inaccessible

1 $ R

2

3 > library(rmarkdown)

4 > rmarkdown :: render("reports/myreport.Rmd")

Accessible

1 $ make REPORT=reports/myreport.Rmd report
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Process Automation: Environment



The Computing Environment

• Processor

• Memory

• Cache

• Disk

• Networking

• Operating system

• Software dependencies

• Package dependencies
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Interlude: Computing History

1970s

Dumb terminals -

mainframes

late 1970s - 2000s

Personal computers

2000s - present

Smart terminals -

mainframes
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21st Century Virtual Solution

Environment creation and management is virtual and automatable

• Cloud IaaS solves hardware issues

• Containers solve software issues
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Containers
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Example: Dockerfile

Environment creation becomes transparent via automation

1 FROM jupyter/minimal -notebook:dc9744740e12

2 MAINTAINER rowe@zatonovo.com

3

4 USER root

5 ENV DEBIAN_FRONTEND noninteractive

6

7 RUN \

8 apt -get update && \

9 apt -get install -qy software -properties -common && \

10 add -apt -repository -y ppa:opencpu/opencpu -2.0 && \

11 apt -get update && \

12 apt -get install -qy opencpu -server x11 -apps

13

14 # Set opencpu password so that we can login

15 RUN \

16 echo "opencpu:opencpu" | chpasswd
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Dependency managers

System packages (debian)

1 RUN apt -get install -qy package -1 package -2

Python packages

1 RUN pip3 install package -1 package -2

2 RUN pip3 install -r requirements.txt

R packages (crant)

1 RUN rpackage package -1 package -2
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https://github.com/zatonovo/crant


Example: GCP

1 $ docker build -t [DOCKER_IMAGE] .

2 $ docker push [DOCKER_IMAGE] .

3 $ gcloud compute instances \

4 create -with -container [INSTANCE_NAME] \

5 --container -image [DOCKER_IMAGE]
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Orchestration

Create collection of connected services
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Pearls of Wisdom



Apply Empathy and Consider Others Using Your Code

Transparent:

• Self-contained workflows with no hidden (e.g., manual) steps

• Documentation that explains decisions/rationale for

algorithms

• Consistent, simple code that is easy to read and debug

• Right tool for job

Accessible:

• Easy to use end-user interfaces (e.g., make)

• Dataset easily acquired

• No human in the loop workflows

• Minimal dependencies

• Minimal cost
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Assume Everything Will Be Done Again

Focus on repeatability:

• Use containers to exactly create your environment

• Use Linux to simplify scripting/automation

• Write executable scripts (e.g., bash) to document processes

• Minimize interactive development

• Create functions as much as possible

• Use error handling to avoid frustration
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Thank You

Questions: rowe@zatonovo.com

Twitch: @cartesianfaith ← experiment for live data science/coding

help

Twitter: @cartesianfaith

Personal website: https://cartesianfaith.com
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