
Adaptive MCMC for Everyone

Jeffrey S. Rosenthal, University of Toronto

jeff@math.toronto.edu

http://probability.ca/jeff/

(1/8)

Estimation from sampling: Monte Carlo

In applications, we often have a complicated, high-dimensional
density function π : X → [0,∞), for some X ⊆ Rd (d large).

(e.g. Bayesian posterior distribution)

Want to compute expected values like:

Eπ(h) :=

∫
X
h(x)π(x) dx .

If π is complicated, can’t use calculus or numerical integration.
Instead, can try to sample from π, i.e. generate on a computer

X1,X2, . . . ,XM ∼ π (i .i .d .) ,

then estimate by e.g.

Eπ(h) ≈ 1

M

M∑
i=1

h(Xi ) .

Good. But how to sample? Often infeasible! Instead . . . (2/8)



Markov Chain Monte Carlo (MCMC)

Define an ergodic Markov chain (random process) X0,X1,X2, . . .,
which converges in distribution to π(·). Extremely popular!

Then for “large enough” n, L(Xn) ≈ π(·), so

Eπ(h) ≈ 1

M

n+M∑
i=n+1

h(Xi ) , etc.

For example (“Metropolis Algorithm”): Given Xn−1:

• Propose a new state Yn ∼ Q(Xn−1, ·), e.g. Yn ∼ N(Xn−1, Σp).

• Let α = min
[
1, π(Yn)

π(Xn−1)

]
.

• With probability α, accept the proposal (set Xn = Yn).

• Else, with prob. 1− α, reject the proposal (set Xn = Xn−1).

FACT: α is chosen just right so this Markov chain is reversible with
respect to π(·), so π(·) stationary, and Xn → π(·). [Javascript] (3/8)

Optimising MCMC?

e.g. Metropolis: what is optimal proposal Q(Xn−1, ·)? [Javascript]

There is various theory which specifies the optimal proposal
distribution, in terms of properties of π.

(Mostly proven using diffusion limits: Roberts-Gelman-Gilks 1997;
Roberts-R. 1998, 2001; Bédard-R. 2007; Atchadé-Roberts-R. 2011;
Yang-Roberts-R. 2020; . . . )

Great, except we might not know enough about π to use it.

“Chicken and egg”. So, let the computer decide, on the fly!

At iteration n, use Markov chain PΓn , where {Pγ}γ∈Y are each
valid MCMC, and then Γn ∈ Y chosen according to some adaptive
rules (depending on chain’s history, etc.). [Javascript]

Can this help us to find better Markov chains? Yes!

(4/8)



Example: High-Dimensional Adaptive Metropolis

In dimension 200, takes over a million iterations, then finally learns
a good proposal distribution and starts mixing well.

(5/8)

Great . . . but is it Ergodic?

No longer Markovian, so maybe not always! [Javascript]

Theorem [Roberts and R., J.A.P. 2007]. Ergodic if it satisfies:

(a) [Diminishing Adaptation] Adapt less and less as the algorithm
proceeds. Formally, supx∈X ‖PΓn+1(x , ·)− PΓn(x , ·)‖ → 0 in prob.

(b) [Containment] Times to stationary are bounded in probability
as n→∞. Formally, ∀ε > 0, {Mε(Xn, Γn)}∞n=0 is tight, where
Mε(x , γ) = inf{n ≥ 1 : ‖Pn

γ (x , ·)− π(·)‖ < ε} is the time to
converge to within ε of stationarity.

Enough to prove ergodicity of Adaptive Metropolis, componentwise
versions, LLN, etc. Good!

Here (a) can always be made to hold, since adaption is user
controlled. But (b) is always a challenge to verify. Instead . . .

(6/8)



Verifying Containment: “For Everyone”

• We proved general theorems about stability of “adversarial”
Markov chains under various conditions (Craiu, Gray, Latuszynski,
Madras, Roberts, and R., A.A.P. 2015).

• Then we applied them to adaptive MCMC, to get a list of
directly-verifiable conditions which guarantee Containment:
⇒ Never move more than some (big) distance D.
⇒ Outside (big) rectangle K , use fixed kernel (no adapting).
⇒ The transition or proposal kernels have continuous densities

wrt Lebesgue measure. (or piecewise continuous: Yang & R. 2015)
⇒ The fixed kernel is bounded above, and below on compact

regions for jumps ≤ δ, by constants times Lebesgue measure.
(Easily verified under continuity assumptions.)

• Can directly ensure these conditions in practice. So, this can
be used by applied MCMC users. “Adaptive MCMC for everyone!”

(7/8)

Summary

• MCMC is extremely popular for estimating expectations.

• Adaptive MCMC tries to “learn” how to sample better. Good.

• Works well for high-dimentional Adaptive Metropolis, etc.

• But must be done carefully, or it will destroy stationarity. Bad.

• To converge to π(·), suffices to have each Pγ be valid, plus (a)
Diminishing Adaptation (important), and (b) Containment
(technical condition, usually satisfied, but hard to verify). Good.

• New “adversarial” conditions more easily verify Containment.

• Hopefully can use adaption on many other examples – try it!

All my papers, applets, software: probability.ca/jeff

(8/8)


